Skip to main content
Log in

Effects of forest-pasture edge on C, N and P associated with Caesalpinia eriostachys, a dominant tree species in a tropical deciduous forest in Mexico

  • Original Article
  • Published:
Ecological Research

Abstract

Forest fragmentation in tropical ecosystems can alter nutrient cycling in diverse ways. We have analysed the effects of the forest-pasture edge on nutrient soil dynamics in a tropical deciduous forest (TDF) in Mexico. In two remnant forest fragments, both larger than 10 ha, litterfall, litter and soil samples associated to the tree Caesalpinia eriostachys were collected at five distances from the pasture edge into the inner forest (10 m in the pasture and 0–10, 30–40, 70–80 and 100–110 m towards the forest interior). We measured the concentrations of carbon (C), nitrogen (N) and phosphorus (P) in litterfall, surface litter and soil, and soil microbial C (Cmic) and microbial N (Nmic). Soil nutrient concentrations and Cmic and Nmic were lower in the pasture soils than in the forest soil samples. Total C and N pools, and Cmic and Nmic in the pasture were lower than in the forest. In contrast, net N immobilization and the increase in Nmic from rain to dry season increased from the edge to the inner forest. Soil P concentration was lower in the pasture and at the first distance class in the forest margin (0–10 m) than in the sites located further into the forest, while litter P concentration had the inverse pattern. Litterfall P was also reduced near the edge and increased towards the forest interior. As a consequence, litterfall C:P and N:P ratios decreased from the edge to the inner forest. These results suggest that the forest–pasture edge disrupts P dynamics within the first 10 m in the forest. Thus, plants' use of nutrients and productivity could be altered in the edge of fragmented forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asner GP, Townsend AR, Bustamante MMC, Nardoto GB, Olander LP (2004) Pasture degradation in the central Amazon: linking changes in carbon and nutrient cycling with remote sensing. Glob Change Biol 10:844–862

    Article  Google Scholar 

  • Basu S, Behera N (1993) The effect of tropical forest conversion on soil microbial biomass. Biol Fertil Soils 16:302–304

    Article  Google Scholar 

  • Binkley D, Giardina C (1997) Nitrogen fixation in tropical forest plantation. In: Nambiar EK, Brown AG (eds) Management of soil, nutrients and water in tropical plantation forest. Australian Center for International Agricultural Research, Canberra, pp 297–338

    Google Scholar 

  • Brookes P, Landman A, Pruden G, Jenkinson D (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Bryan JA, Berlyn GP, Gordon JC (1996) Toward a new concept of the evolution of symbiotic nitrogen fixation in the Leguminosae. Plant Soil 186:151–159

    Article  CAS  Google Scholar 

  • Bullock SH, Solís-Magallanes A (1990) Phenology of canopy trees of a tropical deciduous forest in Mexico. Biotropica 21:22–35

    Article  Google Scholar 

  • Camargo JLC, Kapos V (1995) Complex edge effects on soil-moisture and microclimate in central Amazonian forest. J Trop Ecol 11:205–221

    Google Scholar 

  • Campo J, Jaramillo VJ, Maass JM (1998) Pulses of soil phosphorus availability in a Mexican tropical dry forest: effects of seasonality and level of wetting. Oecologia 115:167–172

    Article  Google Scholar 

  • Campo J, Maass JM, De Pablo L (2001) Weathering in a Mexican tropical dry forest. Agrociencia 35:245–253

    Google Scholar 

  • Castellanos J, Jaramillo VJ, Sanford RL Jr, Kauffman JB (2001) Slash-and-burn effects on fire root biomass and productivity in a tropical dry forest ecosystem in Mexico. For Ecol Manag 148:41–50

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Schmidt SK, Constance BC (2003) Soil microbial dynamics and biogeochemistry in tropical forests and pastures, Southwestern Costa Rica. Ecol Appl 13:314–326

    Article  Google Scholar 

  • Coleman D, Anderson CRV, Cole CV, Elliott ET, Woods L, Campion MK (1978) Trophic interactions in soils as they affected energy and nutrient dynamics. IV. Flows of metabolic and biomass carbon. Microbial Ecol 4:373–380

    Article  CAS  Google Scholar 

  • Davidson EA, de Carvalho CJR, Vieira ICG, Figueiredo RD, Moutinho P, Ishida FY, dos Santos MTP, Guerrero JB, Kalif K, Saba RT (2004) Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol Appl 14:150–163

    Article  Google Scholar 

  • Didham RK (1998) Altered leaf-litter decomposition rates in tropical forest fragments. Oecologia 116:397–406

    Article  Google Scholar 

  • Dockersmith IC, Giardina CP, Sanford RL (1999) Persistence of tree related patterns in soil nutrients following slash-and-burn disturbance in the tropics. Plant Soil 209:137–156

    Article  CAS  Google Scholar 

  • Duran E, Balvanera P, Lott E, Segura G, Pérez-Jiménez A, Islas A, Franco M (2002) In: Nogera A, Vega JH, García-Aldrete AN, Quesada.Estructura M (eds) Composición y dinámica de la vegetación. Historia Natural de Chamela. UNAM, Mexico, pp 443–472

    Google Scholar 

  • Feldpausch TR, Rondon MA, Fernandes ECM, Riha SJ, Wandelli E (2004) Carbon and nutrient accumulation in secondary forests regenerating on pastures in central Amazonia. Ecol Appl 14:S164–S176

    Article  Google Scholar 

  • Fox BJ, Taylor JE, Fox MD, Williams C (1997) Vegetation changes across edges of rainforest remnants. Biol Conserv 82:1–13

    Article  Google Scholar 

  • Galicia L, García-Oliva F (2004) The effects of C, N and P additions on soil microbial activity under two remnant tree species in a tropical seasonal pasture. Appl Soil Ecol 26:31–39

    Article  Google Scholar 

  • Galicia L, García-Oliva F, Murillo R, Oliva M (2002) Flujos de C, N y P al suelo de dos especies de árboles remanentes en una pradera tropical estacional. Acta Bot Mex 61:41–57

    Google Scholar 

  • Garcia-Montiel DC, Nelly C, Melillo J, Thomas S, Steudler PA, Cerri C (2000) Soil phosporus transformations following forest clearing for pasture in the Brazilian Amazon. Soil Sci Soc Am J 64:1792–1804

    Article  CAS  Google Scholar 

  • García-Oliva F, Maass JM (1998) Efecto de la transformación de la selva a pradera sobre la dinámica de los nutrientes en un ecosistema tropical estacional en México. Bol Soc Bot Méx 62:39–48

    Google Scholar 

  • García-Oliva F, Casar I, Morales P, Maass JM (1994) Forest-to-pasture conversion influences on soil organic carbon dynamics in a tropical deciduous forest. Oecologia 99:392–396

    Article  Google Scholar 

  • García-Oliva F, Martínez R, Maass JM (1995a) Long-term net soil erosion as determined by 137Cs redistribution in an undisturbed and perturbed tropical deciduous forest ecosystem. Geoderma 68:135–147

    Article  Google Scholar 

  • García-Oliva F, Maass JM, Galicia L (1995b) Rainstorm analysis and rainfall erosivity of a seasonal tropical region with a strong cyclonic influence in the Pacific Coast of Mexico. J Appl Meteorol 34:2491–2498

    Article  Google Scholar 

  • García-Oliva F, Sanford RL Jr, Kelly E (1999a) Effects of slash-and-burn management on soil aggregate organic C and N in a tropical deciduous forest. Geoderma 88:1–12

    Article  Google Scholar 

  • García-Oliva F, Sanford RL Jr, Kelly E (1999b) Effect of burning of tropical deciduous forest soil in Mexico on the microbial degradation of organic matter. Plant Soil 206:29–36

    Article  Google Scholar 

  • García-Oliva F, Camou A, Maass JM (2002) El clima de la región central de la costa del Pacífico Mexicano. In: Noguera FA, Vega JH García-Aldrete AN, Quesada M (eds) Historia natural de chamela. Instituto de Biología, UNAM, México, pp 3–10

    Google Scholar 

  • García-Oliva F, Sveshtarova B, Oliva M (2003) Seasonal effects on soil organic carbon dynamics in a tropical deciduous forest ecosystem in western Mexico. J Trop Ecol 69:179–188

    Article  Google Scholar 

  • Gentry AH (1995) Diversity and floristics composition of neotropical dry forests. In: Bullock SH, Mooney HA, Medina E (eds) In seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 146–190

    Google Scholar 

  • Giardina CP, Sanford RL Jr, Dockersmith IC (2000) Changes in soil phosphorus and nitrogen during slash-and-burn clearing of a dry tropical forest. Soil Sci Soc Am J 64:399–405

    Article  CAS  Google Scholar 

  • Harper KA, Macdonald SE, Burton PJ, Chen JQ, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782

    Article  Google Scholar 

  • Hester AJ, Hobbs RJ (1992) Influence of fire and soil nutrients on native and nonnative annuals at remnant vegetation edges in the Western Australian wheat-belt. J Veg Sci 3:101–108

    Article  Google Scholar 

  • Houghton RA, Lefkowitz DS, Skole DL (1991) Changes in the landscape of Latin America between 1850 and 1985 I. Progressive loss of forest. For Ecol Manag 38:143–172

    Article  Google Scholar 

  • Janzen DH (1988) Tropical dry forests the most endangered major tropical ecosystem. In: Wilson EO, Peter FM (eds) Biodiversity. National Academy, Washington D.C., pp 130–137

    Google Scholar 

  • Jaramillo VJ, Sanford RL Jr (1995) Nutrient cycling in tropical deciduous forest. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forest Cambridge. University Press, Cambridge, pp 346–361

    Google Scholar 

  • Jenkinson DS (1987) Determination of microbial biomass carbon and nitrogen in soil. In: Wilson JR (ed) Advances in N cycling in agricultural ecosystem. CAB Int, Cambridge, pp 368–386

    Google Scholar 

  • Johnson NC, Wedin DA (1997) Soil carbon, nutrients, and mycorrhizae during conversion of dry tropical forest to grassland. Ecol Appl 7:171–182

    Article  Google Scholar 

  • Kapos V (1989) Effects of isolation on the water status of forest patches in the Brazilian Amazon. J Trop Ecol 5:173–185

    Article  Google Scholar 

  • Laurance WF (1997) Hyper-disturbed parks: edge effects and the ecology of isolated rainforest reserve in tropical Australia. In: Laurence WF, Bierregaard Jr RO (eds) Tropical forest remnants. Ecology, management, and conservation of fragmented communities. The University of Chicago Press, Chicago, pp 71–90

    Google Scholar 

  • Lott EJ (1985) Listado florístico de México III. La estación de biología chamela, jalisco. Instituto de Biología, UNAM, Mexico city

    Google Scholar 

  • Lott EJ, Bullock SH, Solis-Magallanes AS (1987) Floristic diversity and structure of upland arroyo forest of coastal Jalisco. Biotropica 19:228–235

    Article  Google Scholar 

  • Luizao RCC, Bonde TA, Rosswall T (1992) Seasonal-variation of soil microbial biomass – the effects of clearfelling a tropical rain-forest and establishment of pasture in the central Amazon. Soil Biol Biochem 24:805–813

    Article  Google Scholar 

  • Maass JM, Jordan C, Sarukhán J (1988) Soil erosion and nutrient losses in a seasonal tropical agroecosystems under various management techniques. J Appl Ecol 25:595–607

    Article  Google Scholar 

  • Maass JM, Vose JM, Swank WT, Martínez-Yrízar A (1995) Seasonal changes of leaf area index (LAI) on a tropical deciduous forest in west México. For Ecol Manag 74:171–180

    Article  Google Scholar 

  • Martínez-Yrízar A (1984) Procesos de producción y descomposición de hojarasca en selvas estacionales. Master’s thesis, Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  • Martínez-Yrízar A (1995) Biomass distribution and primary productivity of tropical dry forests. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forest. Cambridge. University Press, Cambridge, pp 326–345

    Google Scholar 

  • Martínez-Yrízar A, Sarukhán J (1990) Litterfall patterns in a tropical deciduous forest in Mexico over a five-year period. J Trop Ecol 6:433–444

    Google Scholar 

  • Martínez-Yrízar A, Sarukhan J, Perezjimenez A, Rincon E, Maass JM, Solismagallanes A, Cervantes L (1992) Aboveground phytomass of a tropical deciduous forest on the coast of jalisco, Mexico. J Trop Ecol 8:87–96

    Article  Google Scholar 

  • MINITAB (2000) MINITAB statistical software 2000. Minitab, State College, Pa.

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Neill C, Piccolo MC, Steudler PA, Melillo JM, Feigl BJ, Cerri CC (1995) Nitrogen dynamics in soils of forests and active pastures in the western Brazilian Amazon basin. Soil Biol Biochem 27:1167–1175

    Article  CAS  Google Scholar 

  • Neill C, Piccolo MC, Cerri CC, Steudler PA, Melillo JM, Brito M (1997) Net nitrogen mineralization and net nitrification rates in soils following deforestation for pasture across the southwestern Brazilian Amazon Basin landscape. Oecologia 110:243–252

    Article  Google Scholar 

  • Newbould PJ (1967) Methods for estimating the primary production of forest. IBP handbook No. 2. Blackwell Scientific, Oxford

    Google Scholar 

  • Piotto D, Montagnini F, Kanninen M, Ugalde L, Víquez E (2002) Comportamiento de las especies y preferencias de los productores, Plantaciones forestales en Costa Rica y Nicaragua. Rev For Centroam 38:59–66

    Google Scholar 

  • Potvin C, Lechowicz MJ, Tardif S (1990) The statistical analysis of ecophysiological response curves obtained from experiments involving repeated measures. Ecology 71:1389–1400

    Article  Google Scholar 

  • Powlson DS, Brookes PC, Christensen BT (1987) Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol Biochem 19:159–164

    Article  CAS  Google Scholar 

  • Prasad P, Basu S, Behera N (1994) A comparative account of the microbiological characteristics of soil under natural forest, grassland and cropfield from Eastern India. Plant Soil 175:85–91

    Article  Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe In 12:293–318

    Article  CAS  Google Scholar 

  • Quinn G, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Renteria LY, Jaramillo VJ, Martinez-Yrízar A, Perez-Jimenez A (2005) Nitrogen and phosphorus resorption in trees of a Mexican tropical dry forest. Trees 19:431–441

    Article  CAS  Google Scholar 

  • Roy S, Singh JS (1995) Seasonal and spatial dynamics of plant-available N and P pools and N-mineralization in relation to fine roots in a dry tropical forest habitat. Soil Biol Biochem 27:33–40

    Article  CAS  Google Scholar 

  • Saynes V, Hidalgo C, Etchevers JD, Campo J (2005) Soil C and N dynamics in primary and secondary seasonally dry forest in Mexico. Appl Soil Ecol 29:282–289

    Article  Google Scholar 

  • Singh JS, Raghubanshi AS, Singh RS, Srivastava SC (1989) Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature 338:449–500

    Article  Google Scholar 

  • Singh RS, Raghubanshi AS, Singh JS (1991) Nitrogen-mineralization in dry tropical savanna: effects of burning and grazing. Soil Biol Biochem 23:269–273

    Article  CAS  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregates turnover and microaggregates formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Sizer NC, Tanner EVJ, Kossmann ID (2000) Edge effects on litterfall mass and nutrient concentrations in forest fragments in central Amazonia. J Trop Ecol 16:853–863

    Article  Google Scholar 

  • Srivastava SC, Singh JS (1991) Microbial C, N and P in dry tropical forest soils: effects of alternate land-uses and nutrient fluxes. Soil Biol Biochem 23:117–124

    Article  CAS  Google Scholar 

  • Steininger MK (2000) Secondary forest structure and biomass following short and extended land-use in central and southern Amazonia. J Trop Ecol 16:689–708

    Article  Google Scholar 

  • Strayer DL, Power ME, Fagan WF, Pickett ST, Belnap J (2003) A classification of ecological boundaries. Bioscience 53:723–729

    Article  Google Scholar 

  • Technicon Industrial System (1977) Technicon publication methods no. 329-74W/B. Individual/simultaneous determinations of nitrogen and/or phosphorous in BD acid digest. Technicon Industrial System, New York

    Google Scholar 

  • Turton SM, Freiburger HJ (1997) Edge and aspect effects on the microclimate of a small tropical forest remnant on the Atherton Tableland, Northeastern Australia. In: Laurence WF, Bierregaard RO Jr (eds) Tropical forest remnants. Ecology, management, and conservation of fragmented communities. The University of Chicago Press, Chicago, pp 45–54

    Google Scholar 

  • Vance ED, Brookes AC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Vasconcelos HL, Luizao FJ (2004) Litter production and litter nutrient concentrations in a fragmented Amazonian landscape. Ecol Appl 14:884–892

    Article  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45

    Article  Google Scholar 

  • Williams-Linera G (1990) Vegetation structure and environmental conditions of forest edges in Panama. J Ecol 78:356–373

    Article  Google Scholar 

  • Williams-Linera G (1993) Edge vegetation in a cloud forest at Parque-Ecologico-Clavijero, Xalapa, Veracruz, Mexico. Rev Biol Trop 41:443–453

    Google Scholar 

  • Williams-Linera G, Domínguez-Gastelú V, García-Zurita ME (1998) Microenvironment and floristics of different edge in a fragmented tropical rainforest. Conserv Biol 12:1091–1102

    Article  Google Scholar 

  • Wright IJ, Westoby M (2003) Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol 17:10–19

    Article  Google Scholar 

Download references

Acknowledgements

This research was financed by Consejo Nacional de Ciencia y Tecnologia, Mexico (Project No. G27674-N and Grant No. 128765 to T. T-A). The authors thank D.F.R.P. Burslem, K. Macmillan, J.M. Maass, C. Montaña and O. Briones and two anonymous reviewers for their helpful comments on the manuscript. We thank Salvador Araiza for his assistance in the field work; M. Nava-Mendoza and P. Islas in the laboratory analysis; H. Ferreira and Alberto Valencia for their assistance in processing data; the personnel of the Chamela Biological Station, UNAM, for their logistic assistance during the field work and Ramiro Peña for allowing us to use his pastures; and the Instituto de Ecología AC for use of the facilities during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe García-Oliva.

About this article

Cite this article

Toledo-Aceves, T., García-Oliva, F. Effects of forest-pasture edge on C, N and P associated with Caesalpinia eriostachys, a dominant tree species in a tropical deciduous forest in Mexico. Ecol Res 23, 271–280 (2008). https://doi.org/10.1007/s11284-007-0373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-007-0373-0

Keywords

Navigation