Skip to main content

Advertisement

Log in

Regulation of heavy metal concentrations in cereal grains from uranium mine soils

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Along a gradient of diminishing heavy metal (HM) concentrations formed by local inclusions of uranium mine soils into non-contaminated cropland, duplicate 1-m2 plots of 3 winter wheat cvs. (Akteur E, Brilliant A, and Bussard E) were established at 3 positions within a winter rye (cv. Visello) culture. It was the goal to determine permissible soil HM concentrations tolerated by cereal cvs. with variable excluder properties, and regulatory mechanisms which optimize the concentrations of essential minerals and radionuclide analogues in viable seeds from geologically related soils with diverging HM content.

Methods

Total metal concentrations / nitrogen species in soils, shoots, and mature grains were determined by ICP-MS / spectrophotometry, and Kjeldahl analyses.

Results

No non-permissible concentrations in grains of the 4 cereal cvs. were caused by elevated but aged total soil resources (mg kg-1 DW) in As (156); Cu (283); Mn (2,130); Pb (150); and in Zn (3,005) in the case of Bussard although CdCuZn elicited phytotoxicity symptoms. Uranium (41) contaminated grains of Akteur and Brilliant but not of Bussard and Visello due to their excluder properties. The concentration in Cd (41) had to be reduced to 20/2 mg kg-1 for the production by excluder cvs. of fodder/food grains. Cultivars excluding both HM and radionuclide analogues such as BaCsSr synchronously were not identified. Whereas plant tissue concentrations in the metalloprotein-associated elements CdCoCuMnNiZn rise and fall generally with Norg, grains of the wheat cvs. differed too little in Norg to designate variations in their metal acquisition rates solely as protein-regulated. Wheat grains confined nevertheless the concentrations in Cu to 11–14 mg kg-1 although the respective soil concentrations varied by factor 19. Grain deposition in CaFeMn(Zn) and in nuclides followed the same rules.

Conclusions

It is hypothesized that cereals down-/up-regulate grain:soil transfer rates from soils with excessive/deficient trace metal resources to equip viable seeds with an optimum but not maximum in essential minerals. Positive correlations between metal concentrations in planta to those in soil can thereby be lost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aciksoz SB, Yazici A, Ozturk L, Cakmak I (2011) Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil 349:215–225

    Article  CAS  Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York

    Book  Google Scholar 

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

    Article  PubMed  CAS  Google Scholar 

  • Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218

    Article  PubMed  CAS  Google Scholar 

  • Arrivault S, Senger T, Krämer U (2006) The Arabidopsis metal transport protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46:861–879

    Article  PubMed  CAS  Google Scholar 

  • Auermann E, Dässler H-G, Jacobi J, Cumbrowski J, Meckel U (1980) Untersuchungen zum Schwermetallgehalt von Getreide und Kartoffeln. Die Nahrung 24:925–937

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Barman SC, Sahu RK, Bhargava SK, Chaterjee C (2000) Distribution of heavy metals in wheat, mustard, and weed grown in field irrigated with industrial effluents. Bull Environ Contam Toxicol 64:489–496

    Article  PubMed  CAS  Google Scholar 

  • Bergmann H, Gramss G (2011) Foliar application of alkanolamines reduces productivity losses in drought-stresssed crops. J Nature Sci Sust Technol (Nova) 4:165–184

    Google Scholar 

  • Bergmann H, Voigt K-D, Machelett B, Gramss G (2006) Variation in heavy metal uptake by crop plants. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment. Springer, Berlin, pp 459–468

    Chapter  Google Scholar 

  • Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginger-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44:15–23

    Article  PubMed  CAS  Google Scholar 

  • Bose S, Bhattacharyya AK (2008) Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 70:1264–1272

    Article  PubMed  CAS  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic, London

    Google Scholar 

  • Bowie SHU, Thornton I (1985) Environmental geochemistry and health. Reidel, Amsterdam

    Book  Google Scholar 

  • Brandão AR, Barbosa HS, Arruda MAZ (2010) Image analysis of two-dimensional gel electrophoresis for comparative proteomics of transgenic and non-transgenic soybean seeds. J Proteomics 73:1433–1440

    Article  PubMed  Google Scholar 

  • Britto DT, Siddiqi MY, Glass ADM, Kronzucker HJ (2001) Futile transmembrane NH +4 cycling: a cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA 98:4255–4258

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cash D, Funston R, King M, Wichman D (2006) Nitrate toxicity of Montana forages. http://www.montana.edu/wwwpb/pubs/mt200205.html

  • Chen S, Sun L, Sun T, Chao L, Guo G (2007) Interaction between cadmium, lead and potassium fertilizer (K2SO4) in a soil-plant system. Environ Geochem Health 29:435–446

    Article  PubMed  CAS  Google Scholar 

  • Cook LL, Inouye RS, McGonigle TP (2009) Evaluation of four grasses for use in phytoremediation of Cs-contaminated arid land soil. Plant Soil 324:169–184

    Article  CAS  Google Scholar 

  • Decree (EU) (2001) No. 466/2001 der Kommission vom 08. März 2001 zur Festsetzung der Höchstgehalte für bestimmte Kontaminanten in Lebensmitteln. Amtsblatt der Europäischen Gemeinschaften Nr. L77/1 vom 16.03.2001

  • Degryse F, Smolders E, Mercks R (2006) Labile Cd complexes increase Cd availability to plants. Environ Sci Technol 40:830–836

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    Article  PubMed  CAS  Google Scholar 

  • Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175

    Article  CAS  Google Scholar 

  • Erenoglu EB, Kutman UB, Ceylan Y, Yildiz B, Cakmak I (2011) Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytol 189:438–448

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Becerra HF, Erdem H, Yazici A, Tutus Y, Torun B, Ozturk L, Cakmak I (2010) Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J Cereal Sci 52:342–349

    Article  CAS  Google Scholar 

  • Gorban GR, Wenzel WW, Lombi E (1999) Trace elements in the rhizosphere. CRC, Boca Raton

    Google Scholar 

  • Gramss G, Bergmann H (2008) Applications of NH4Cl and citrate: keys to acceptable phytoextraction techniques? In: Merkel BJ, Hasche-Berger A (eds) Uranium, mining and hydrogeology. Springer, Berlin, pp 321–331

    Chapter  Google Scholar 

  • Gramss G, Bergmann H (2010) Optimizing the content of nutritionally essential trace metals in Chinese cabbage (Brassica chinensis L.) with soil applications of compost or nitrogen. In: Bundgaard K, Isaksen L (eds) Agriculture research and technology. Nova, New York, pp 361–378

    Google Scholar 

  • Gramss G, Bergmann H (2012) Impact of soil applications of sand, compost, or nitrogen on uptake of essential and non-essential elements by Chinese cabbage (Brassica chinensis L.). J Nature Sci Sust Technol (Nova)

  • Gramss G, Voigt K-D, Bergmann H (2002) Mobilization of hazardous metals by plants growing in soils from uranium mining. In: Merkel BJ, Planer-Friedrich B, Wolkendorfer C (eds) Uranium in the aquatic environment. Springer, Berlin, pp 521–528

    Chapter  Google Scholar 

  • Gramss G, Voigt K-D, Bergmann H (2004) Plant availability and leaching of (heavy) metals from ammonium-, calcium-, carbohydrate-, and citric-acid-treated uranium-mine-dump soil. J Plant Nutr Soil Sci 167:417–427

    Article  CAS  Google Scholar 

  • Gramss G, Büchel G, Bergmann H (2005) Manipulation of the water-solubility of (heavy) metals in uranium mine soil with the exchangeable bases, Ca, K, Mg, and Na at a near-constant pH. In: Proc. securing the future, June 27-July 1, 2005, Skellefteå, Sweden, pp 343-352

  • Gramss G, Büchel G, Bergmann H (2006) Soil treatment with nitrogen facilitates continuous phytoextraction of heavy metals. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment. Springer, Berlin, pp 483–493

    Chapter  Google Scholar 

  • Gramss G, Schubert R, Bergmann H (2011a) Carbon and nitrogen compounds applied to uranium mine dump soil determine (heavy) metal uptake by Chinese cabbage. Environ Res J (Nova) 5:793–818

    Google Scholar 

  • Gramss G, Voigt K-D, Merten D (2011b) Phytoextraction of heavy metals by dominating perennial herbs. In: Merkel BJ, Schipek M (eds) The new uranium mining boom. Springer, Berlin, pp 421–431

    Chapter  Google Scholar 

  • Guo B, Schmitt J, Chen Z, Liang L, McCarthy JF (1994) Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Technol 28:38–46

    Article  Google Scholar 

  • Hashimoto Y, Matsufuru H, Sato T (2008) Attenuation of lead leachability in shooting range soils using poultry waste amendments in combination with indigenous plant species. Chemosphere 73:643–649

    Article  PubMed  CAS  Google Scholar 

  • Hayes MHB (1991) Influence of the acid / base status on the formation and interactions of acids and bases in soils. In: Ulrich B, Sumner ME (eds) Soil acidity. Springer, Berlin, pp 80–96

    Chapter  Google Scholar 

  • Huang M, Zhou S, Sun B, Zhao Q (2008) Heavy metals in wheat grain: assessment of potential health risk for inhabitants in Kunshan, China. Sci Total Environ 405:54–61

    Article  PubMed  CAS  Google Scholar 

  • Il’in VB (2007) Heavy metals in the soil-crop system. Eurasian Soil Sci 40:993–999

    Article  Google Scholar 

  • Irving H, Williams RJP (1948) Order of stability of metal complexes. Nature 162:746–747

    Article  CAS  Google Scholar 

  • Kirchmann H, Mattsson L, Eriksson J (2009) Trace element concentration in wheat grain: results from the Swedish long-term soil fertility experiments and national monitoring program. Environ Geochem Health 31:561–571

    Article  PubMed  CAS  Google Scholar 

  • Kloke A (1979) Contents of arsenic, cadmium, chromium, fluorine, lead, mercury and nickel in plants grown on contaminated soil. Paper presented at United Nations–ECE Symp. on Effects of Air-borne Pollution on Vegetation, Warsaw

  • Klug B, Horst WJ (2010) Oxalate exudation into the root-tip water free space confers protection from aluminum toxicity and allows aluminum accumulation in the symplast in buckwheat (Fagopyrum esculentum). New Phytol 187:380–391

    Article  PubMed  CAS  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  Google Scholar 

  • Kutman UB, Yildiz B, Cakmak I (2011) Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil 342:149–164

    Article  CAS  Google Scholar 

  • Laird BD, Peak D, Siciliano SD (2011) Bioaccessibility of metal cations in soil is linearly related to its water exchange rate constant. Environ Sci Technol 45:4139–4144

    Article  PubMed  CAS  Google Scholar 

  • Liu W-X, Liu J-W, Wu M-Z, Li Y, Zhao Y, Li S-R (2009) Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bull Environ Contam Toxicol 82:343–347

    Article  PubMed  CAS  Google Scholar 

  • Malandrino M, Abollino O, Buoso S, Giacomino A, La Gioia C, Mentasti E (2011) Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere 82:169–178

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Acad. Press, London

    Google Scholar 

  • Martinez-Finley EJ, Chakraborty S, Fretham SJB, Aschner M (2012) Cellular transport and homeostasis of essential and nonessential metals. Metallomics 4: doi:10.1039/c2mt00185c

  • Mataveli LRV, Pohl P, Mounicou S, Zezzi Aruda MA, Szpunar J (2010) A comparative study of element concentrations and binding in transgenic and non-transgenic soybean seeds. Metallomics 2:800–805

    Article  PubMed  CAS  Google Scholar 

  • McDowell LR (2003) Minerals in animal and human nutrition, 2nd edn. Elsevier Science, Amsterdam

    Google Scholar 

  • McLaughlin MJ, Andrew SJ, Smart MK, Smolders E (1998) Effects of sulfate on cadmium uptake by Swiss chard: I. Effects of complexation and calcium competition in nutrient solutions. Plant Soil 202:211–216

    Article  CAS  Google Scholar 

  • Meers E, Lamsal S, Vervaeke P, Hopgood M, Lust N, Tack FMG (2005) Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Environ Pollut 137:354–364

    Article  PubMed  CAS  Google Scholar 

  • Mengel K (1991) Ernährung und Stoffwechsel der Pflanze, 7th edn. Gustav Fischer, Jena

    Google Scholar 

  • Mishra M, Sahu RK, Sahu SK, Padhy RN (2009) Growth, yield and elements content of wheat (Triticum aestivum) grown in composted municipal solid wastes amended soil. Environ Dev Sustain 11:115–126

    Article  Google Scholar 

  • Nam SM, Kim M, Hyun S, Lee S-H (2010) Chemical attenuation of arsenic by soils across two abandoned mine sites in Korea. Chemosphere 81:1124–1130

    Article  PubMed  CAS  Google Scholar 

  • Nan Z, Zhao C, Li J, Chen F, Sun W (2002) Relations between soil properties and selected heavy metal concentrations in springwheat (Triticum aestivum L.) grown in contaminated soils. Water Air Soil Pollut 133:205–213

    Article  CAS  Google Scholar 

  • Oke OL (1966) Nitrite toxicity to plants. Nature 212:528

    Article  CAS  Google Scholar 

  • Osuji GO, Brown TK, South SM, Duncan JC, Johnson D, Hyllam S (2012) Molecular adaptation of peanut metabolic pathways to wide variations of mineral ion composition and concentration. Am J Plant Sci 3:33–50

    Article  CAS  Google Scholar 

  • Persson DP, Hansen TH, Laursen KH, Schjoerring JK, Husted S (2009) Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP-ICP-MS. Metallomics 1:418–426

    Article  PubMed  CAS  Google Scholar 

  • Riccardi G, Milano A, Pasca MR, Nies DH (2008) Genomic analysis of zinc homeostasis in Mycobacterium tuberculosis. FEMS Microbiol Lett 287:1–7

    Article  PubMed  CAS  Google Scholar 

  • Sauerbeck D (1983) Landwirtsch Forsch. Special Issue 39:108–129

    Google Scholar 

  • Schachtschabel P, Blume HP, Brümmer G, Hartge KH, Schwertmann U (1998) Lehrbuch der Bodenkunde, 14th edn. Enke, Stuttgart

    Google Scholar 

  • Schinner F, Öhlinger R, Kandeler E, Margesin R (1993) Bodenbiologische Arbeitsmethoden, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Severin K (2007) merkblatt_anbauempfehlungen_sm-belastete_boeden_20070615[1].pdf. Landwirtschafts-kammer Niedersachsen (Google)

  • Shuman LM, Dudka S, Das K (2001) Zinc forms and plant availability in a compost amended soil. Water Air Soil Pollut 128:1–11

    Article  CAS  Google Scholar 

  • Standring WJF, Oughton DH, Salbu B (2002) Potential remobilization of 137Cs, 60Co, 99Tc, and 90Sr from contaminated Mayak sediments in river and estuary environments. Environ Sci Technol 36:2330–2337

    Article  PubMed  CAS  Google Scholar 

  • Sumner ME, Fey MV, Noble AD (1991) Nutrient status and toxicity problems in acid soils. In: Ulrich B, Sumner ME (eds) Soil acidity. Springer, Berlin, pp 149–182

    Chapter  Google Scholar 

  • Tyler G, Olsson T (2001) Plant uptake of major and minor mineral elements as influenced by soil acidity and liming. Plant Soil 230:307–321

    Article  CAS  Google Scholar 

  • Van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Van Themaat EVL, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  PubMed  Google Scholar 

  • Van Driel W, Van Luit B, Smilde KW, Schuurmans W (1995) Heavy-metal uptake by crops from polluted river sediments covered by non-polluted topsoil. Plant Soil 175:93–104

    Article  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312

    Article  PubMed  CAS  Google Scholar 

  • Von Wirén N, Klair S, Bansal S, Briat J-F, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107–1114

    Article  Google Scholar 

  • Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830

    Article  PubMed  CAS  Google Scholar 

  • Wang YX, Specht A, Horst WJ (2011) Stable isotope labelling and zinc distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals zinc transport barriers during grain filling in wheat. New Phytol 189:428–437

    Article  PubMed  CAS  Google Scholar 

  • Xing JP, Jiang RF, Ueno D, Ma JF, Schat H, McGrath SP, Zhao FJ (2008) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol 178:315–325

    Article  PubMed  CAS  Google Scholar 

  • Yang X-E, Chen W-R, Feng Y (2007) Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study. Environ Geochem Health 29:413–428

    Article  PubMed  CAS  Google Scholar 

  • Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188

    Article  PubMed  CAS  Google Scholar 

  • Zebarth BJ, Warren CJ, Sheard RW (1992) Influence of the rate of nitrogen fertilization on mineral content of winter wheat in Ontario. J Agric Food Chem 40:1528–1530

    Article  CAS  Google Scholar 

  • Zhang Z-W, Moon C-S, Watanabe T, Shimbo S, Ikeda M (1997) Content of pollutant and nutrient elements in rice and wheat grown on the neighboring fields. Biol Trace Element Res 57:39–50

    Article  CAS  Google Scholar 

  • Zhang B, Georgiev O, Hagmann M, Günes C, Cramer M, Faller P, Vasák M, Schaffner W (2003) Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein. Mol Cell Biol 23:8471–8485

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are obliged to Dr. Dirk Merten, Institute of Geosciences of the Friedrich-Schiller-University in Jena for elaborating metal analytical data of grain samples as well as to Dipl. Agr. Dieter Senf, Agrargenossenschaft Schöps e. G., D-07768 Schöps, for providing plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Gramss.

Additional information

Responsible Editor: Juan Barcelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gramss, G., Voigt, KD. Regulation of heavy metal concentrations in cereal grains from uranium mine soils. Plant Soil 364, 105–118 (2013). https://doi.org/10.1007/s11104-012-1338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1338-9

Keywords

Navigation