Skip to main content

Advertisement

Log in

Genetic variation for root architecture, nutrient uptake and mycorrhizal colonisation in Medicago truncatula accessions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Sustainable agriculture strives for healthy, high yielding plants with minimal agronomic inputs. Genetic solutions to increase nutrient uptake are desirable because they provide ongoing improvements. To achieve this it is necessary to identify genes involved in uptake and translocation of nutrients. We selected Medicago truncatula L. as a model because of its: i) close genetic relationship to food legumes, ii) use as a pasture legume in southern Australia and iii) availability of mapping populations generated from genetically diverse accessions. We discovered statistically significant differences between eight accessions for: root architecture in growth pouches, % root colonisation with the arbuscular mycorrhizal (AM) fungus Glomus intraradices, and plant tissue concentration of most macro- and micronutrients. Mycorrhizal colonisation had a significant effect on P concentration in roots but not shoots, Mg concentration in both roots and shoots, and the concentration of various micronutrients in shoots including Fe, Ca, but not Zn. Comparison of micronutrient uptake between root and shoot tissues showed that some M. truncatula accessions were more efficient at mobilisation of nutrients from roots to shoots. We are now in a position to use existing mapping populations of M. truncatula to identify quantitative trait loci important for human health and sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison RJ, Blatt MR, Amtmann A (2009) EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture. Plant J 57:945–956

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI, Hoagland DR (1940) Crop production in artificial culture solutions and in soils with special reference to factors influencing yields and absorption of inorganic nutrients. Soil Science 50:463–483

    CAS  Google Scholar 

  • Atkinson D, Black KE, Forbes PJ, Hooker JE, Baddeley JA, Watson CA (2003) The influence of arbuscular mycorrhizal colonization and environment on root development in soil. Eur J Soil Sci 54:751–757

    Article  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM, Sylvia DM, Park S, Buttery BR, Saxton AM, Moore JL, Cho KH (2004) Partitioning mycorrhizal influence on water relations of Phaseolus vulgaris into soil and plant components. Can J Bot 82:503–514

    Article  Google Scholar 

  • Baxter I, Muthukumar B, Park HC, Buchner P, Lahner B, Danku J, Zhao K, Lee J, Hawkesford MJ, Guerinot ML, Salt DE (2008) Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet 4:e1000004

    Article  PubMed  Google Scholar 

  • Bécard G, Piché Y (1992) Establishment of vesicular-arbuscular mycorrhiza in root organ culture: review and proposed methodology. Methods Microbiol 24:89–108

    Article  Google Scholar 

  • Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol 114:207–215

    Article  Google Scholar 

  • Berta G, Fusconi A, Hooker JE (2002) Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. In: Gianninazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser Verlag, Basel, pp 71–85

    Google Scholar 

  • Bonser AM, Lynch J, Snapp S (1996) Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytol 132:281–288

    Article  CAS  PubMed  Google Scholar 

  • Burleigh SH, Kristensen BK, Bechmann IE (2003) A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Mol Biol 52:1077–1088

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Torun B, Erenoğlu B, Öztürk L, Marschner H, Kalayci M, Ekiz H, Yilmaz A (1998) Morphological and physiological differences in the response of cereals to zinc deficiency. Euphytica 100:349–357

    Article  CAS  Google Scholar 

  • Caris C, Hördt W, Hawkins HJ, Römheld V, George E (1998) Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 8:35–39

    Article  CAS  Google Scholar 

  • Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325

    Article  CAS  Google Scholar 

  • Chen WR, He ZL, Yang XE, Feng Y (2009) Zinc efficiency is correlated with root morphology, ultrastructure, and antioxidative enzymes in rice. J Plant Nutr 32:287–305

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Crawford EJ, Lake AWH, Boyce KG (1989) Breeding annual Medicago species for semiarid conditions in southern Australia. Adv Agron 42:399–437

    Article  Google Scholar 

  • de Dorlodot S, Forster B, Pages L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481

    Article  PubMed  Google Scholar 

  • de Kroon H, Mommer L (2006) Root foraging theory put to the test. Trends Ecol Evol 21:113–116

    Article  PubMed  Google Scholar 

  • Devienne-Barret F, Richard-Molard C, Chelle M, Maury O, Ney B (2006) Ara-rhizotron: An effective culture system to study simultaneously root and shoot development of Arabidopsis. Plant Soil 280:253–266

    Article  CAS  Google Scholar 

  • Dhandaydham M, Charles L, Zhu H, Starr JL, Huguet T, Cook DR, Prosperi JM, Opperman C (2008) Characterization of root-knot nematode resistance in Medicago truncatula. J Nematol 40:46–54

    PubMed  Google Scholar 

  • Drew MC, Saker LR, Ashley TW (1973) Nutrient supply and the growth of the seminal root system in barley. I. The effect of nitrate concentration on the growth of axes and laterals. J Exp Bot 24:1189–1202

    Article  CAS  Google Scholar 

  • Ellwood SR, D’Souza NK, Kamphuis LG, Burgess TI, Nair RM, Oliver RP (2006) SSR analysis of the Medicago truncatula SARDI core collection reveals substantial diversity and unusual genotype dispersal throughout the Mediterranean basin. Theor Appl Genet 112:977–983

    Article  CAS  PubMed  Google Scholar 

  • Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991) Architectural analysis of plant-root systems. 1. Architectural correlates of exploitation efficiency. New Phytol 118:375–382

    Article  Google Scholar 

  • Gao XP, Kuyper TW, Zou CQ, Zhang FS, Hoffland E (2007) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant Soil 290:283–291

    Article  CAS  Google Scholar 

  • Genc Y, McDonald GK, Graham RD (2006) Contribution of different mechanisms to zinc efficiency in bread wheat during early vegetative stage. Plant Soil 281:353–367

    Article  CAS  Google Scholar 

  • Genc Y, Huang CY, Langridge P (2007) A study of the role of root morphological traits in growth of barley in zinc-deficient soil. J Exp Bot 58:2775–2784

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Mosse B (1980) Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Grubbs F (1969) Procedures for detecting outlying observations in samples. Technometrics 11:1–21

    Article  Google Scholar 

  • Gutjahr C, Casieri L, Paszkowski U (2009) Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytol 182:829–837

    Article  Google Scholar 

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159:341–350

    Article  CAS  Google Scholar 

  • Hacisalihoglu G, Hart JJ, Vallejos CE, Kochian LV (2004) The role of shoot-localized processes in the mechanism of Zn efficiency in common bean. Planta 218:704–711

    Article  CAS  PubMed  Google Scholar 

  • Haines BJ (2002) Zincophilic root foraging in Thlaspi caerulescens. New Phytol 155:363–372

    Article  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Article  PubMed  Google Scholar 

  • Hetrick BAD (1991) Mycorrhizas and root architecture. Experientia 47:355–362

    Article  Google Scholar 

  • Hodge A (2009) Root decisions. Plant Cell Environ 32:628–640

    Article  PubMed  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    Article  CAS  Google Scholar 

  • Kamphuis LG, Lichtenzveig J, Oliver RP, Ellwood SR (2008) Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula. BMC Plant Biol 8

  • Kothari SK, Marschner H, Romheld V (1990) Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil. New Phytol 116:637–645

    Article  CAS  Google Scholar 

  • Liao H, Rubio G, Yan XL, Cao AQ, Brown KM, Lynch JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232:69–79

    Article  CAS  PubMed  Google Scholar 

  • Liao H, Yan XL, Rubio G, Beebe SE, Blair MW, Lynch JP (2004) Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol 31:959–970

    Article  CAS  Google Scholar 

  • Linkohr BI, Williamson LC, Fitter AH, Leyser HMO (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Liu FJ, Tang YT, Du RJ, Yang HY, Wu QT, Qiu RL (2010) Root foraging for zinc and cadmium requirement in the Zn/Cd hyperaccumulator plant Sedum alfredii. Plant Soil 327:365–375

    Article  CAS  Google Scholar 

  • MacMillan K, Emrich K, Piepho HP, Mullins CE, Price AH (2006a) Assessing the importance of genotype x environment interaction for root traits in rice using a mapping population II: conventional QTL analysis. Theor Appl Genet 113:953–964

    Article  CAS  PubMed  Google Scholar 

  • MacMillan K, Emrich K, Piepho HP, Mullins CE, Price AH (2006b) Assessing the importance of genotype x environment interaction for root traits in rice using a mapping population. I: a soil-filled box screen. Theor Appl Genet 113:977–986

    Article  CAS  PubMed  Google Scholar 

  • McDonald GK, Genc Y, Graham RD (2008) A simple method to evaluate genetic variation in grain zinc concentration by correcting for differences in grain yield. Plant Soil 306:49–55

    Article  CAS  Google Scholar 

  • McNeill AM, Penfold CM (2009) Agronomic management options for phosphorus in Australian dryland organic and low-input cropping systems. Crop Pasture Sci 60:163–182

    Article  CAS  Google Scholar 

  • Mehravaran H, Mozafar A, Frossard E (2000) Uptake and partitioning of 32P and 65Zn by white clover as affected by eleven isolates of mycorrhizal fungi. J Plant Nutr 23:1385–1395

    Article  CAS  Google Scholar 

  • Nibau C, Gibbs DJ, Coates JC (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595–614

    Article  CAS  PubMed  Google Scholar 

  • Nichols PGH, Loi A, Nutt BJ, Evans PM, Craig AD, Pengelly BC, Dear BS, Lloyd DL, Revell CK, Nair RM, Ewing MA, Howieson JG, Auricht GA, Howie JH, Sandral GA, Carr SJ, de Koning CT, Hackney BF, Crocker GJ, Snowball R, Hughes EJ, Hall EJ, Foster KJ, Skinner PW, Barbetti MJ, You MP (2007) New annual and short-lived perennial pasture legumes for Australian agriculture—15 years of revolution. Field Crops Res 104:10–23

    Article  Google Scholar 

  • Ochoa IE, Blair MW, Lynch JP (2006) QTL analysis of adventitious root formation in common bean under contrasting phosphorus availability. Crop Sci 46:1609–1621

    Article  CAS  Google Scholar 

  • Oláh B, Brière C, Bécard G, Dénarié J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207

    Article  PubMed  Google Scholar 

  • Paszkowski U, Boller T (2002) The growth defect of Irt1, a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Planta 214:584–590

    Article  CAS  PubMed  Google Scholar 

  • Phan HTT, Ellwood SR, Hane JK, Ford R, Materne M, Oliver RP (2007) Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp culinaris. Theor Appl Genet 114:549–558

    Article  PubMed  Google Scholar 

  • Rengel Z (1995) Carbonic anhydrase activity in leaves of wheat genotypes differing in Zn efficiency. J Plant Physiol 147:251–256

    CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Ronfort J, Bataillon T, Santoni S, Delalande M, David J, Prosperi J-M (2006) Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection for studying naturally occurring variation in Medicago truncatula. BMC Plant Biol 6:28

    Article  PubMed  Google Scholar 

  • Rose RJ (2008) Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future. Funct Plant Biol 35:253–264

    Article  Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271

    Article  CAS  Google Scholar 

  • Scagel CF, Schreiner RP (2006) Phosphorus supply alters tuber composition, flower production, and mycorrhizal responsiveness of container-grown hybrid Zantedeschia. Plant Soil 283:323–337

    Article  CAS  Google Scholar 

  • Skinner DZ, Bauchan GR, Auricht G, Hughes S (1999) A method for the efficient management and utilization of large germplasm collections. Crop Sci 39:1237–1242

    Article  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New York

    Google Scholar 

  • Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366

    Article  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358

    Article  CAS  PubMed  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Streeter TC, Rengel Z, Graham RD (2001) Genotypic differences in Zn efficiency of Medicago species. Euphytica 120:281–290

    Article  CAS  Google Scholar 

  • Subramanian KS, Charest C (1997) Nutritional, growth, and reproductive responses of maize (Zea mays L) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza 7:25–32

    Article  Google Scholar 

  • Sun Y, Li XL, Feng G (2008) Effect of arbuscular mycorrhizal colonization on ecological functional traits of ephemerals in the Gurbantonggut desert. Symbiosis 46:121–127

    CAS  Google Scholar 

  • Swaminathan K, Verma BC (1979) Response of three crop species to vesicular-arbuscular mycorrhizal infection on zinc-deficient Indian soils. New Phytol 82:481–487

    Article  Google Scholar 

  • Szczyglowski K, Stougaard J (2008) Lotus genome: pod of gold for legume research. Trends Plant Sci 13:515–517

    Article  CAS  PubMed  Google Scholar 

  • Tarkalson DD, Jolley VD, Robbins CW, Terry RE (1998) Mycorrhizal colonization and nutrient uptake of dry bean in manure and compost manure treated subsoil and untreated topsoil and subsoil. J Plant Nutr 21:1867–1878

    Article  CAS  Google Scholar 

  • Tivoli B, Baranger A, Sivasithamparam K, Barbetti MJ (2006) Annual Medicago: From a model crop challenged by a spectrum of necrotrophic pathogens to a model plant to explore the nature of disease resistance. Ann Bot 98:1117–1128

    Article  CAS  PubMed  Google Scholar 

  • Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, Fujiwara T (2007) An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc Natl Acad Sci USA 104:18807–18812

    Article  CAS  PubMed  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  PubMed  Google Scholar 

  • Wang H, Inukai Y, Yamauchi A (2006) Root development and nutrient uptake. Crit Rev Plant Sci 25:279–301

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2005) Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops. J Trace Elem Med Biol 18:299–307

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Zhang XH, Lin AJ, Gao YL, Reid RJ, Wong MH, Zhu YG (2009) Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41:930–935

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank Simon Ellwood and Richard Oliver for providing information on the availability of M. truncatula mapping populations. Accessions DZA045 and F83005 were kindly provided by David Bird. Expert technical assistance was provided by Eric Craft (nutrient analysis) and Jean-Patrick Toussaint (AM colonisation). Kathy Crowley provided access to and assistance with WinRHIZO. We thank Evelina Facelli for statistical advice and gratefully acknowledge Sally Smith, Andrew Smith and James Stangoulis for valuable discussions and critical comments on the manuscript. Financial assistance was provided by the AW Howard Memorial Trust Inc. for a travel grant (to CJS) and the U.S. National Science Foundation (DBI-0421676 to M.J.H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn J. Schultz.

Additional information

Responsible editor: Katharina Pawlowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

a Relative root dry weight based on fraction used for ICP analysis. b total shoot dry weight (as in Fig. 2b) to allow for comparison with root dry weight. (GIF 103 kb)

High resolution image file. (EPS 1171 kb)

Supplementary Fig. 2

a total root P. No significant difference for interaction but significant for root status (AM vs NM, P < 0.01) and genotype (P < 0.001). b total shoot P. No significant difference for interaction or root status (AM vs NM) but significant for genotype (P < 0.001). (GIF 98 kb)

High resolution image file. (EPS 1191 kb)

Supplementary Fig. 3

Total nutrient amount (mg or µg) in eight M. truncatula accessions under low Zn conditions. a root Zn, b shoot Zn, c root Mg, d shoot Mg, e root Fe, f shoot Fe, g root Mo and h shoot Mo. (GIF 736 kb)

High resolution image file. (EPS 1684 kb)

Supplementary Fig. 4

Concentration of micronutrients and K in eight M. truncatula accessions. Plants were grown for 4 wk after inoculation with G. intraradices (AM) or mock inoculation (NM) under low Zn conditions (n = 3 pots, 3 plants per pot). Open bars, NM; black bars AM. See Table 1 for 2-way ANOVA results of data. (PDF 272 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultz, C.J., Kochian, L.V. & Harrison, M.J. Genetic variation for root architecture, nutrient uptake and mycorrhizal colonisation in Medicago truncatula accessions. Plant Soil 336, 113–128 (2010). https://doi.org/10.1007/s11104-010-0453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0453-8

Keywords

Navigation