Skip to main content

Advertisement

Log in

Free-air CO2 enrichment (FACE) enhances the biodiversity of purple phototrophic bacteria in flooded paddy soil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purple phototrophic bacteria (PPB) are thought to be crucial in the nutrient cycling of rice field. However, it remains unclear how PPB would respond to the climate change associated with the projected atmospheric CO2 in the future. A factorial design of field experiments was set up with two levels of atmospheric CO2 concentration (350 and 550 μmol mol−1) and N application rate (150 and 250 kg N ha−1) to investigate the abundance and composition changes of PPB in rhizospheric and bulk soils in response to the rising atmospheric CO2 concentration. Based on denaturant gradient gel electrophoresis (DGGE) analysis of pufM gene encoding the M subunit of anoxygenic PPB light reaction center, elevated CO2 appeared to enhance the biodiversity of PPB in flooded paddy soils. This was further supported by canonical correspondence analysis (CCA) of DGGE fingerprinting pattern of pufM genes in paddy soils as well as Shannon diversity indices. Real-time quantitative PCR analysis of pufM gene further indicated that PPB abundance was stimulated by elevated CO2 in bulk soil, while the contrasting result was observed in rhizospheric soil. Our result for the first time demonstrated that elevated CO2 enhanced the biodiversity of PPB within α and β subdivisions of Proteobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FACE:

free-air CO2 enrichment

PPB:

purple phototrophic bacteria

DGGE:

denaturing gradient gel electrophoresis

CCA:

canonical correspondence analysis

PNSB:

purple nonsulfur bacteria

PSB:

purple sulfur bacteria

SOC:

soil organic C

References

  • Achenbach LA, Carey J, Madigan MT (2001) Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Appl Environ Microbiol 67:2922–2926. doi:10.1128/AEM.67.7.2922-2926.2001

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the response of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372. doi:10.1111/j.1469-8137.2004.01224.x

    Article  PubMed  Google Scholar 

  • Amann RI (1995) Fluorescently labelled, rRNA-targeted oligonucleotide probes in the study of microbial ecology. Mol Ecol 4:543–554. doi:10.1111/j.1365-294X.1995.tb00255.x

    Article  CAS  Google Scholar 

  • Aude F, Antoni S, Ella D, Anthony R-P, Isabel E, Pierre C, Robert D (2006) Vertical migration of phototrophic bacterial populations in a hypersaline microbial mat from Salins-de-Giraud (Camargue, France). FEMS Microbiol Ecol 57:367–377. doi:10.1111/j.1574-6941.2006.00124.x

    Article  CAS  Google Scholar 

  • Blaabjerg V, Finster K (1998) Sulfate reduction associated with roots and rhizomes of the marine macrophyte Zostera marina. Aquat Microb Ecol 15:311–314. doi:10.3354/ame015311

    Article  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102. doi:10.1016/S0065-2113(08)60425-3

    Article  Google Scholar 

  • Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710

    PubMed  CAS  Google Scholar 

  • Cho J-C, Stapels MD, Morris RM, Vergin KL, Schwalbach MS, Givan SA, Barofsky DF, Giovannoni SJ (2007) Polyphyletic photosynthetic reaction centre genes in oligotrophic marine Gammaproteobacteria. Environ Microbiol 9:1456–1463. doi:10.1111/j.1462-2920.2007.01264.x

    Article  PubMed  CAS  Google Scholar 

  • Daepp M, Suter D, Almeida JPF, Isopp H, Hartwig UA, Frehner M, Blum H, Nosberger J, Luscher A (2000) Yield responses of Lolium perenne swards to free-air CO2 enrichment increased over six years in a high N input system on fertile soil. Glob Change Biol 6:805–6816. doi:10.1046/j.1365-2486.2000.00359.x

    Article  Google Scholar 

  • Du HL, Jiao NZ, Hu YH, Zeng YH (2006) Real-time PCR for quantification of aerobic anoxygenic phototrophic bacteria based on pufM gene in marine environment. J Exp Mar Biol Ecol 329:113–121. doi:10.1016/j.jembe.2005.08.009

    Article  CAS  Google Scholar 

  • Elbadry M, Gamal-Eldin H, Elbanna K (1999) Effects of Rhodobacter capsulatus inoculation in combination with graded levels of nitrogen fertilizer on growth and yield of rice in pots and lysimeter experiments. World J Microbiol Biotechnol 15:393–395. doi:10.1023/A:1008958832402

    Article  Google Scholar 

  • Gifford RM, Barrett DJ, Lutze JL (2000) The effects of elevated [CO2] on the C:N and C:P mass ratios of plant tissues. Plant Soil 224:1–14. doi:10.1023/A:1004790612630

    Article  CAS  Google Scholar 

  • Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12. doi:10.1111/j.1365-2389.2005.00778.x

    Article  Google Scholar 

  • Guyoneaud R, Matheron R, Baulaigue R, Podeur K, Hirschler A, Caumette P (1996) Anoxygenic phototrophic bacteria in eutrophic coastal lagoons of the french mediterranean and atlantic coasts (Prévost Lagoon, Arcachon Bay, Certes Fishponds). Hydrobiologia 329:33–43. doi:10.1007/BF00034545

    Article  CAS  Google Scholar 

  • Harada N, Otsuka S, Nishiyama M, Matsumoto S (2003) Characteristics of phototrophic purple bacteria isolated from a Japanese paddy soil. Soil Sci Plant Nutr 49:521–526

    CAS  Google Scholar 

  • Harada N, Nishiyama M, Otsuka S, Matsumoto S (2005) Effects of inoculation of phototrophic bacteria on grain yield of rice and nitrogenase activity of paddy soil in a pot experiment. Soil Sci Plant Nutr 51:361–367. doi:10.1111/j.1747-0765.2005.tb00041.x

    Article  Google Scholar 

  • Horz HP, Barbrook A, Field CB, Bohannan BJM (2004) Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci USA 101:15136–15141. doi:10.1073/pnas.0406616101

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Du H, Jiao N, Zeng Y (2006) Abundant presence of the γ-like Proteobacterial pufM gene in oxic seawater. FEMS Microbiol Lett 263:200–206. doi:10.1111/j.1574-6968.2006.00421.x

    Article  PubMed  CAS  Google Scholar 

  • Idso K, Idso S (1994) Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years’ research. Agric Meteorol 69:153–203. doi:10.1016/0168-1923(94)90025-6

    Article  Google Scholar 

  • Imhoff J (1995) Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. Kluwer, Dordrecht, The Netherlands, pp 1–15

    Google Scholar 

  • Jastrow JD, Miller RM, Owensby CE (2000) Long-term effects of elevated atmospheric CO2 on below-ground biomass and transformations to soil organic matter in grass land. Plant Soil 224:85–97. doi:10.1023/A:1004771805022

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480. doi:10.1111/j.1469-8137.2004.01130.x

    Article  CAS  Google Scholar 

  • Jongen M, Fay P, Jones M (1996) Effects of elevated carbon dioxide and arbuscular mycorrhizal infection on Trifolium repens. New Phytol 132:413–423. doi:10.1111/j.1469-8137.1996.tb01861.x

    Article  CAS  Google Scholar 

  • Jongman RHG, ter Braak CJF, van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, p 299

    Google Scholar 

  • Karr EA, Sattley WM, Jung DO, Madigan MT, Achenbach LA (2003) Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microbiol 69:4910–4914. doi:10.1128/AEM.69.8.4910-4914.2003

    Article  PubMed  CAS  Google Scholar 

  • Kolber ZS, Van Dover CL, Niederman RA, Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179. doi:10.1038/35025044

    Article  PubMed  CAS  Google Scholar 

  • Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photo hetero-trophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495. doi:10.1126/science.1059707

    Article  PubMed  CAS  Google Scholar 

  • Lamborg M, Hardy R, Paul E (1983) Microbial effects. In: Lemon ER (ed) CO2 and plants. The response of plants to rising levels of atmospheric carbon dioxide. Westview, Boulder, pp 131–176

    Google Scholar 

  • Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skiena S, Taghavi S, Zak D, van der Lelie D (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941. doi:10.1111/j.1462-2920.2007.01512.x

    Article  PubMed  CAS  Google Scholar 

  • Li FS, Kang SZ, Zhang JH (2003a) CO2 enrichment on biomass accumulation and nitrogen nutrition of spring wheat under different soil nitrogen and water status. J Plant Nutr 26:769–788. doi:10.1081/PLN-120018564

    Article  CAS  Google Scholar 

  • Liesack W, Schnell S, Revsbech NP (2000) Microbiology of flooded rice paddies. FEMS Microbiol Rev 24:625–645. doi:10.1111/j.1574-6976.2000.tb00563.x

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Han Y, Zhu JG, Okada M, Nakamura H, Yoshimoto M (2002) Rice-wheat rotational FACE platform I. System structure and control. Chin J Appl Ecol 13:1253–1258

    CAS  Google Scholar 

  • Ludden PW, Roberts GP (2002) Nitrogen fixation by photosynthetic bacteria. Photosynth Res 73:115–118. doi:10.1023/A:1020497619288

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM (1990) Introduction: some consequences of microbial rhizosphere competence for plant and soil. Wiley, Chichester, pp 1–10

    Google Scholar 

  • Madigan MT, Gest H (1978) Growth of a photosynthetic bacterium anaerobically in darkness, supported by ‘oxidant-dependent’ sugar fermentation. Arch Microbiol 117:119–122. doi:10.1007/BF00402298

    Article  PubMed  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL (ed) Methods of soil analysis part 2. American Society of Agronomy, Madison, pp 539–580

    Google Scholar 

  • O’Neill EG (1994) Responses of soil biota to elevated atmospheric carbon dioxide. Plant Soil 165:55–65. doi:10.1007/BF00009962

    Article  Google Scholar 

  • Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim HY, Kobayashi K (2001) Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. New Phytol 150:251–260. doi:10.1046/j.1469-8137.2001.00097.x

    Article  Google Scholar 

  • Owensby C, Coyne P, Auen L (1993b) Nitrogen and phosphorous in a tallgrass prairie ecosystem exposed to ambient and elevated CO2. Ecol Appl 3:644–653. doi:10.2307/1942097

    Article  Google Scholar 

  • Paterson E, Hall JM, Rattray EAS, Griffiths BS, Ritz K, Killham K (1997) Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Glob Change Biol 3:363–377. doi:10.1046/j.1365-2486.1997.t01-1-00088.x

    Article  Google Scholar 

  • Peduzzi S, Tonolla M, Hahn D (2003) Isolation and characterization of aggregate-forming sulfate-reducing and purple sulfur bacteria from the chemocline of meromictic Lake Cadagno, Switzerland. FEMS Microbiol Ecol 45:29–37. doi:10.1016/S0168-6496(03)00107-7

    Article  PubMed  CAS  Google Scholar 

  • Pfennig N (1967) Photosynthetic bacteria. Annu Rev Microbiol 21:285–324. doi:10.1146/annurev.mi.21.100167.001441

    Article  PubMed  CAS  Google Scholar 

  • Pfennig N (1978a) General physiology and ecology of photosynthetic bacteria. In: Clayton RK and Sistrom WR (eds) Plenum, New York, pp 3–18

  • Pfennig N (1989) Ecology of phototrophic purple and green sulfur bacteria. Springer-Verlag, New York, N.Y., pp 81–96

    Google Scholar 

  • Poorter H (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Plant Ecol 104:77–105. doi:10.1007/BF00048146

    Article  Google Scholar 

  • Rogers H, Dahiman R (1993) Crop responses to CO2 enrichment. Plant Ecol 104:104–131. doi:10.1007/BF00048148

    Article  Google Scholar 

  • Rogers H, Runion G, Krupa S (1994) Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ Pollut 83:155–189. doi:10.1016/0269-7491(94)90034-5

    Article  PubMed  CAS  Google Scholar 

  • Sadowsky MJ, Schortemeyer M (1997) Soil microbial responses to increased concentrations of atmospheric CO2. Glob Change Biol 3:217–224. doi:10.1046/j.1365-2486.1997.00078.x

    Article  Google Scholar 

  • Schortemeyer M, Hartwig UA, Hendrey GR, Sadowsky MJ (1997) Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to free air carbon dioxide enrichment (FACE). Soil Biol Biochem 28:1717–1724. doi:10.1016/S0038-0717(96)00243-X

    Article  Google Scholar 

  • Shan Y, Cai Z, Han Y, Johnson SE, Buresh RJ (2008) Organic acid accumulation under flooded soil conditions in relation to the incorporation of wheat and rice straws with different C:N ratios. Soil Sci Plant Nutr 54:46–56

    CAS  Google Scholar 

  • Tabita FR (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Advances in photosynthesis and respiration, Vol 2. Kluwer Academic, Dordrecht, pp 885–914

    Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie Van Leeuwenhoek 30:225–238. doi:10.1007/BF02046728

    Article  Google Scholar 

  • Waidner LA, Kirchman DL (2005) Aerobic anoxygenic photosynthesis genes and operons in uncultured bacteria in the Delaware River. Environ Microbiol 7:1896–1908. doi:10.1111/j.1462-2920.2005.00883.x

    Article  PubMed  CAS  Google Scholar 

  • Waidner LA, Kirchman DL (2008) Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene pufM in the Delaware estuary. Appl Environ Microbiol 74:4012–4021. doi:10.1128/AEM.02324-07

    Article  PubMed  CAS  Google Scholar 

  • Waksman SA (1952) Soil microbiology. Wiley, New York, p 205 Chapman and Hall, London

    Google Scholar 

  • Xu ZJ, Zheng XH, Wang YS, Wang YL, Huang Y, Zhu J (2006) Effect of free-air atmospheric CO2 enrichment on dark respiration of rice plants (Oryza sativa L.). Agric Ecosyst Environ 115:105–112. doi:10.1016/j.agee.2005.12.017

    Article  Google Scholar 

  • Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108. doi:10.1016/0038-0717(94)90131-7

    Article  Google Scholar 

  • Zeng YH, Chen XH, Jiao NZ (2007) Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance-based grouping analysis of pufM sequences. Lett Appl Microbiol 45:639–645. doi:10.1111/j.1472-765X.2007.02247.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of the projects (No. 40571156, 40801091 and 20777092) supported by National Natural Science Foundation of China and the projects (No. ISSASIP0608 and KZCX-SW-440) supported by CAS Knowledge Innovation Program. The authors would like to extend their gratitude to the staffs of Nianyu Experimental Station for running FACE system, the core platform of The Chinese Rice/Wheat FACE Project initiated by China-Japan Science and Technology Cooperation Agreement

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangui Lin.

Additional information

Responsible Editor: Johan Six.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Lin, X., Wang, Y. et al. Free-air CO2 enrichment (FACE) enhances the biodiversity of purple phototrophic bacteria in flooded paddy soil. Plant Soil 324, 317–328 (2009). https://doi.org/10.1007/s11104-009-9959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9959-3

Keywords

Navigation