Skip to main content

Advertisement

Log in

OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

OCBIL theory aims to develop an integrated series of hypotheses explaining the evolution and ecology of, and best conservation practices for, biota on very old, climatically buffered, infertile landscapes (OCBILs). Conventional theory for ecology and evolutionary and conservation biology has developed primarily from data on species and communities from young, often disturbed, fertile landscapes (YODFELs), mainly in the Northern Hemisphere. OCBILs are rare, but are prominent in the Southwest Australian Floristic Region, South Africa’s Greater Cape, and Venezuela’s Pantepui Highlands. They may have been more common globally before Pleistocene glaciations. Based on the premise that natural selection has favoured limited dispersability of sedentary organisms, OCBILs should have elevated persistence of lineages (Gondwanan Heritage Hypothesis) and long-lived individuals (Ultimate Self Hypothesis), high numbers of localised rare endemics and strongly differentiated population systems. To counter such natural fragmentation and inbreeding due to small population size, ecological, cytogenetic and genetic mechanisms selecting for the retention of heterozygosity should feature (the James Effect). The climatic stability of OCBILs should be paralleled by persistence of adjacent semi-arid areas, conducive to speciation (Semiarid Cradle Hypothesis). Special nutritional and other biological traits associated with coping with infertile lands should be evident, accentuated in plants, for example, through water-foraging strategies, symbioses, carnivory, pollination and parasitism. The uniquely flat landscapes of southwestern Australia have had prolonged presence of saline lakes along palaeoriver systems favouring evolution of accentuated tolerance to salinity. Lastly, unusual resiliences and vulnerabilities might be evident among OCBIL organisms, such as enhanced abilities to persist in small fragmented populations but great susceptibility to major soil disturbances. In those places where it is most pertinent, OCBIL theory hopefully lays a foundation for future research and for better informed conservation management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbott I, Burrows N (eds) (2003) Fire in ecosystems of South-west Western Australia: impacts and management. Backhuys, Leiden

    Google Scholar 

  • Allen J, O’Connell JF (2003) The long and the short of it: archaelogical approaches to determining when humans first colonised Australia and New Guinea. Austral Archaeol 57:5–10

    Google Scholar 

  • Allison HE and Hobbs RJ (2004) Resilience, adaptive capacity, and the “Lock-in Trap” of the Western Australian agricultural region. Ecol Soc 9, 3. Available online. http://www.ecologyandsociety.org/vol9/iss1/art3/

  • Angiosperm Phylogeny Group (APG II) (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • Arroyo-Rodriguez V, Pineda E, Escobar F, Ben’Itez-Malvido J (2009) Value of small patches in the conservation of plant-species diversity in highly fragmented rainforest. Conserv Biol 23:729–739

    Article  Google Scholar 

  • Axelrod DI (1967) Drought, diastrophism and quantum evolution. Evolution 21:201–209

    Article  Google Scholar 

  • Axelrod DI (1972) Edaphic aridity as a factor in angiosperm evolution. Am Nat 106:311–20

    Article  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic, New York, pp 147–168

    Google Scholar 

  • Baker HG, Stebbins GL (1965) The genetics of colonizing species. Academic, New York

    Google Scholar 

  • Bakker FT, Helbrugge D, Culham A, Gibby M (1998) Phylogenetic relationships within Pelargonium sect. Peristera (Geraniaceae) inferred from nrDNA and cpDNA comparisons. Plant Syst Evol 211:273–287

    Article  CAS  Google Scholar 

  • Bakker FT, Culham A, Marais EM, Gibby M (2005) Nested radiation in Cape Pelargonium. In: Bakker FT, Chatrou LW, Gravendeel B, Pelser PB (eds) Plant species-level systematics. ARG Gantner Verlag, Ruggell, Liechtenstein, pp 75–100

    Google Scholar 

  • Barthlott W, Porembski S (eds) (2000) Biodiversity on Inselbergs. Springer Verlag, Heidelberg

    Google Scholar 

  • Beard JS, Chapman AR, Gioia P (2000) Species richness and endemism in the Western Australian flora. J Biogeog 27:1257–1268

    Article  Google Scholar 

  • Bellingham PJ, Sparrow AD (2000) Resprouting as a life history strategy in woody plant communities. Oikos 89:409–416

    Article  Google Scholar 

  • Beresford Q (2001) Developmentalism and its environmental legacy: the Western Australia Wheatbelt, 1900–1990s. Austral J Polit Hist 47:403–414

    Article  CAS  Google Scholar 

  • Berg RY (1975) Myrmecochorous plants in Australia and their dispersal by ants. Austral J Bot 23:475–508

    Article  Google Scholar 

  • Berry PE, Riina R (2005) Insights into the diversity of the Pantepui flora and the biogeographic complexity of the Guayana Shield. Biol Skr 55:145–167

    Google Scholar 

  • Bhagwat SA, Willis KJ (2008) Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? J Biogeogr 35:464–482

    Article  Google Scholar 

  • Bierman PR (1994) Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution: a review from the geomorphic perspective. J Geol Res 99:13885–13896

    Article  Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394

    Article  PubMed  Google Scholar 

  • Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51

    Article  PubMed  Google Scholar 

  • Bond WJ, van Wilgen BW (1996) Fire and plants. Chapman & Hall, London

    Google Scholar 

  • Bond WJ, Midgley JJ, Vlok J (1988) When is an island not an island? Insular effects and their causes in fynbos shrublands. Oecologia 77:515–521

    Article  Google Scholar 

  • Bond WJ, Yeaton R, Stock WD (1991) Myrmecochory in Cape Fynbos. In: Huxley CR, Cutler DF (eds) Ant-plant interactions. Oxford University Press, Oxford, pp 448–462

    Google Scholar 

  • Born J, Linder HP, Desmet P (2007) The greater Cape Floristic region. J Biogeogr 34:147–162

    Article  Google Scholar 

  • Branagan D (2008) Australia—a Cenozoic history. Geol Soc London Spec Publ 301:189–213

    Article  Google Scholar 

  • Broadhurst LM, Lowe A, Coates DJ, Cunningham SA, McDonald M, Vesk PA, Yates C (2008) Seed supply for broadscale restoration: maximizing evolutionary potential. Evol Appl 1:587–597

    Google Scholar 

  • Brooker MIH, Hopper SD (1989) A new series, Rigentes, of Eucalyptus (Myrtaceae) comprising three new species endemic to Western Australia. Nuytsia 7:5–13

    Google Scholar 

  • Brown JM (1989) Regional variation in kwongan in the central wheatbelt of Western Australia. Austral J Ecol 14:345–355

    Article  Google Scholar 

  • Brown JH, Lomolino MV (2000) Concluding remarks: historical perspective and the future of island biogeography theory. Glob Ecol Biogeogr 9:87–92

    Article  Google Scholar 

  • Brown AP, Thomson-Dans C, Marchant N (eds) (1998) Western Australia’s threatened flora. Dept. Conservation and Land Management, Perth

    Google Scholar 

  • Brown AP, Dundas P, Dixon KW, Hopper SD (2008) Orchids of Western Australia. University of Western Australia Press, Perth

    Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    Article  PubMed  Google Scholar 

  • Brundrett M (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Pl Soil, in press

  • Brundu G, Lupi R, Zapelli I, Fossati T, Patrigani G, Camarda I, Sala F, Castiglione S (2008) The origin of clonal diversity and structure of Populus alba in Sardinia: evidence from nuclear and plastid microsatellite markers. Ann Bot 102:997–1006

    Article  PubMed  Google Scholar 

  • Bussell JD, Waycott M, Chappill JA, James SH (2002) Molecular phylogenetic analysis of the evolution of complex hybridity in Isotoma petraea. Evolution 56:1296–1302

    PubMed  Google Scholar 

  • Bussell JD, Hood P, Alacs EA et al (2006) Rapid genetic delineation of local provenance seed-collection zones for effective rehabilitation of an urban bushland remnant. Austral Ecol 31:164–175

    Article  Google Scholar 

  • Byrne M (2007) Phylogeography provides an evolutionary context for a diverse and ancient flora. Austral J Bot 55:316–325

    Article  Google Scholar 

  • Byrne M, Hopper SD (2008) Granite outcrops as ancient islands in old landscapes: evidence from the phylogeography and population genetics of Eucalyptus caesia (Myrtaceae) in Western Australia. Biol J Linn Soc 93:177–188

    Article  Google Scholar 

  • Byrne M, Macdonald B, Coates DJ (1999) Divergence in the chloroplast genome and nuclear rDNA of the rare Western Australian plant Lambertia orbifolia Gardner (Proteaceae). Mol Ecol 8:1789–1796

    Article  PubMed  CAS  Google Scholar 

  • Byrne M, Elliott CP, Yates C, Coates DJ (2007) Extensive pollen dispersal in a bird-pollinated shrub, Calothamnus quadrifidus, in a fragmented landscape. Mol Ecol 16:1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Byrne M, Yeates DK, Joseph L, Kearney M, Bowler J, Williams MAJ, Cooper S, Donnellan SC, Keogh S, Leys R, Melville J, Murphy DJ, Porch N, Wyrwoll K-H (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol Ecol 17:4398–4417

    Article  PubMed  CAS  Google Scholar 

  • Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87:1217–1227

    Article  PubMed  Google Scholar 

  • Calviño-Cancela M, Dunn RR, van Etten EJB, Lamont BB (2006) Emus as non-standard seed dispersers and their potential for long-distance dispersal. Ecography 29:632–640

    Article  Google Scholar 

  • Campbell NA, Hopper SD, Caccetta PA (2000) Mapping granite outcrops in the Western Australian Wheatbelt using Landsat TM data. J Roy Soc West Austral 83:109–113

    Google Scholar 

  • Cape Special Feature (2006) Divers Distrib 12:1–123

    Article  Google Scholar 

  • Carlgren K, Mattsson L (2001) Swedish soil fertility experiments. Acta Agric Scand, Sect B — Plant Soil Sci 51:49–76

    Google Scholar 

  • Carlquist S (1974) Island Biology. Columbia University Press, New York

    Google Scholar 

  • Carstens P (2007) Always here even tomorrow. The enduring spirit of the South African Nama in the modern world. Xlibris, Bloomington

    Google Scholar 

  • Carter B (2006) Nyungah land records of invasion and theft of aboriginal land on the Swan River 1829–1850. Swan Valley Nyungah Community, Guildford Western Australia

    Google Scholar 

  • Chen XY, Barton CE (1991) Onset of aridity and dune building in central Australia: sedimentological and magnetostratigraphic evidence from Lake Amadeus. Palaeogeograph Palaeoclimatol Palaeoecol 84:55–73

    Article  Google Scholar 

  • Chen L, James SH, Stace HM (1997) Self-incompatibility, seed abortion and clonality in the breeding systems of several Western Australian Drosera species (Droseraceae). Austral J Bot 45:191–201

    Article  Google Scholar 

  • Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715

    Article  PubMed  CAS  Google Scholar 

  • Coates DJ (2000) Defining conservation units in a rich and fragmented flora: implications for the management of genetic resources and evolutionary processes in south-west Australian plants. Austral J Bot 48:329–339

    Article  Google Scholar 

  • Coates DJ, Carstairs S, Hamley VL (2003) Evolutionary patterns and genetic structure in localized and widespread species in the Stylidium caricifolium complex (Stylidiaceae). Am J Bot 90:997–1008

    Article  CAS  Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305

    Article  Google Scholar 

  • Cowling RM (1987) Fire and its role in coexistence and speciation in the Gondwanan shrublands. S Af J Sci 83:106–112

    Google Scholar 

  • Cowling RM (ed) (1992) The ecology of fynbos. Nutrients, fire and diversity. Oxford Univ Press, Cape Town

    Google Scholar 

  • Cowling RM, Bond WJ (1991) How small reserves can be? An empirical approach in the Cape fynbos. Biol Cons 58:243–256

    Article  Google Scholar 

  • Cowling RM, Lamont BB (1998) On the nature of Gondwanan species flocks: diversity of Proteaceae in Mediterranean south-western Australia and South Africa. Austral J Bot 46:335–355

    Article  Google Scholar 

  • Cowling RM, Pierce SM (1999) Namaqualand: a succulent desert. Fernwood, Vlaeberg, South Africa

    Google Scholar 

  • Cowling RM, Richardson DM (1995) Fynbos: South Africa’s unique floral kingdom. Fernwood, Vlaeberg, South Africa

    Google Scholar 

  • Cowling RM, Pierce SM, Stock WD, Cocks M (1994) Why are there so many myrmecochorous species in the Cape fynbos? In: Arianoutsou M, Groves RH (eds) Plant animal interactions in Mediterranean type ecosystems. Kluwer, Dordrecht, pp 159–168

    Google Scholar 

  • Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in mediterranean-climate regions. Trends Ecol Evol 11:362–366

    Article  Google Scholar 

  • Cowling RM, Pressey RL, Rouget M, Lombard AT (2003) A conservation plan for a global biodiversity hotspot—the Cape Floristic Region, South Africa. Biol Cons 112:191–216

    Article  Google Scholar 

  • Cowling RM, Ojeda F, Lamont BB, Rundel PW, Lechmere-Oertel R (2005a) Rainfall reliability, a neglected factor in explaining convergence and divergence of plant traits in fire-prone mediterranean-climate ecosystems. Global Ecol Biogeogr 14:509–519

    Article  Google Scholar 

  • Cowling RM, Proches S, Vlok JHJ (2005b) On the origin of southern African subtropical thicket vegetation. S Af J Bot 71:1–23

    Google Scholar 

  • Cowling RM, Proches S, Partridge TC (2009) Explaining the uniqueness of the Cape flora: Incorporating geomorphic evolution as a factor for explaining its diversification. Mol Phyl Evol 51:64–74

    Article  Google Scholar 

  • Cramer VA, Hobbs RJ (2007) Old fields dynamics and restoration of abandoned farmland, science and practice of ecological restoration series. Island, Washington DC

    Google Scholar 

  • Cramer VA, Hobbs RJ, Standish RJ (2008) What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol Evol 23:104–112

    Article  PubMed  Google Scholar 

  • Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ, McGlone MS, Weston PH, Westoby M, Wilf P, Linder HP (2009) Phylogenetic biome conservatism on a global scale. Nature 458:754–756

    Article  PubMed  CAS  Google Scholar 

  • Dallman P (1998) Plant life in the World’s Mediterranean climates. Califonia Native Plant Society, University of California Press, Berkeley

    Google Scholar 

  • Damgaard J, Klass K-D, Picker MD, Buder G (2008) Phylogeny of the Heelwalkers (Insecta: Mantophasmatodea) based on mtDNA sequences, with evidence for additional taxa in South Africa. Mol Phylogenet Evol 47:443–462

    Article  PubMed  CAS  Google Scholar 

  • Darwin CR (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 1st edn. John Murray, London

    Google Scholar 

  • Darwin CR (1862) On the various contrivances by which British and foreign orchids are fertilised by insects. John Murray, London

    Google Scholar 

  • Darwin C (1875a) Insectivorous plants. John Murray, London

    Google Scholar 

  • Darwin C (1875b) The movements and habits of climbing plants, 2nd edn. John Murray, London

    Google Scholar 

  • Darwin CR (1876) The effects of cross and self fertilisation in the vegetable kingdom. John Murray, London

    Google Scholar 

  • Deacon HJ, Jury MR, Ellis F (1992) Selective regime and time. In: Cowling RM (ed) The ecology of fynbos. Nutrients, fire and diversity. Oxford Univ Press, Cape Town, pp 6–22

    Google Scholar 

  • Denton MD, Veneklaas EJ, Freimoser FM, Lambers H (2007) Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus. Plant Cell Environ 30:1557–1565

    Article  PubMed  CAS  Google Scholar 

  • Dirnböck T, Hobbs RJ, Lambeck RJ, Caccetta PA (2002) Vegetation distribution in relation to topographically driven processes in southwestern Australia. Appl Veg Sci 5:147–158

    Article  Google Scholar 

  • Dodson JR, Westoby M (eds) (1985) Are Australian ecosystems different? Proc Ecol Soc Aust 14:1–250

  • Donoghue MJ (2008) A phylogenetic perspective on the distribution of plant diversity. PNAS 105:1149–1155

    Article  Google Scholar 

  • Donoghue MJ, Bell CD, Li J (2001) Phylogenetic patterns in Northern Hemisphere plant geography. Int J Plt Sci 162(6 Suppl):S41–S52

    Article  Google Scholar 

  • Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23:38–47

    Article  Google Scholar 

  • Duller GAT (2000) Dating methods: geochronology and landscape evolution. Prog Phys Geogr 24:111–116

    Google Scholar 

  • Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci USA 97:9115–9120

    Article  PubMed  CAS  Google Scholar 

  • Ellis AG, Johnson SD (2009) The evolution of floral variation without pollinator shifts in Gorteria diffusa (Asteraceae). Am J Bot 96:793–801

    Article  Google Scholar 

  • Ellis A, Weis A, Gaut B (2006) Evolutionary radiation of “stone plants” in the genus Argyroderma (Aizoaceae): unravelling the effects of landscape, habitat, and flowering time. Evolution 60:39–55

    PubMed  Google Scholar 

  • Ellison AM, Gotelli NJ (2009) Energetics and the evolution of carnivorous plants—Darwin’s ‘most wonderful plants in the world’. J Exp Bot 60:19–42

    Article  PubMed  CAS  Google Scholar 

  • Erfmeier A, Bruelheide H (2004) Comparison of native and invasive Rhododendron ponticum populations: growth, reproduction and morphology under field conditions. Flora—Morphol Distrib Funct Ecol Plants 199:120–133

    Article  Google Scholar 

  • Fiedler PL (1986) Concepts of rarity in vascular plant species, with special reference to the genus Calochortus Pursh (Liliaceae). Taxon 35:502–518

    Article  Google Scholar 

  • Fisher JL, Veneklaas EJ, Lambers H, Loneragan WA (2006) Enhanced soil and leaf nutrient status of a Western Australian Banksia woodland community invaded by Ehrharta calycina and Pelargonium capitatum. Plt Soil 284:253–264

    Article  CAS  Google Scholar 

  • Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Proches S, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760

    Article  PubMed  CAS  Google Scholar 

  • Gadgil M, Solbrig OT (1972) The concept of r- and K-selection: evidence from wild flowers and some theoretical considerations. Am Nat 106:14–31

    Article  Google Scholar 

  • Gale S (1992) Long-term landscape evolution in Australia. Earth Surface Processes Landforms 17:323–343

    Article  Google Scholar 

  • García MB (2008) Life history and population size variability in a relict plant. Different routes towards long-term persistence. Divers Distrib 14:106–113

    Article  Google Scholar 

  • George R, Clarke J, English P (2006) Modern and palaeogeographic trends in the salinisation of the Western Australian Wheatbelt. Proc Aust Earth Sci Conv 1–21

  • Ghiselin MT (1969) The triumph of the Darwinian method, 1st edn. University of California Press, Berkeley

    Google Scholar 

  • Gibson N (ed) (2007) Translation of Diels 1906 The Plant Life of Western Australia, Leipzig. Conserv Sci West Austral 6:1–373

  • Gilbert FS (1980) The equilibrium theory of island biogeography: fact or fiction? J Biogeogr 7:209–235

    Article  Google Scholar 

  • Gill AM (1977) Plant traits adaptive to fires in Mediterranean land ecosystems. In: Mooney HA, Conrad CE (eds) Proceedings of the Symposium on the Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems .USDA For. Serv. Gen. Tech. Rep. WO-3:17–26

  • Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. Am J Bot 87:783–792

    Article  PubMed  Google Scholar 

  • Givnish TJ, McDiarmid RW, Buck WR (1986) Fire adaptation in Neblinaria celiae (Theaceae), a high-elevation rosette shrub endemic to a wet equatorial tepui. Oecologia 70:481–485

    Article  Google Scholar 

  • Givnish TJ, Sytsma KJ, Smith JF, Hahn WJ, Benzing DH, Burkhardt EM (2000) Molecular evolution and adaptive radiation in Brocchinia (Bromeliaceae: Pitcairnioideae) atop tepuis of the Guyana Shield. In: Givnish TJ, Sytsma KJ (eds) Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge, pp 259–311

    Google Scholar 

  • Goldblatt P (1986) Cytology and systematics of the Morea fugax complex (Iridaceae). Ann Missouri Bot Gard 73:140–157

    Article  Google Scholar 

  • Goldblatt P, Manning JC (2000) Cape Plants. A Conspectus of the Cape Flora of South Africa. Strelitzia 9:1–743

    Google Scholar 

  • Goldblatt P, Manning JC (2002) Plant diversity of the Cape Region of Southern Africa. Ann Missouri Bot Gard 89:281–302

    Article  Google Scholar 

  • Goldblatt P, Savolainen V, Porteous O, Sostaric I, Powell M, Reeves G, Manning JC, Barraclough TG, Chase MW (2002) Radiation in the Cape flora and the phylogeny of peacock irises Moraea (Iridaceae) based on four plastid DNA regions. Mol Phylogenet Evol 25:341–360

    Article  PubMed  CAS  Google Scholar 

  • Gomez C, Espadaler X (1998) Myrmecochorus dispersal distances: a world survey. J Biogeogr 25:573–580

    Article  Google Scholar 

  • Goudie AS, Eckardt F (1999) The evolution of the morphological framework of the central Namib Desert, Namibia, since the early Cretaceous. Geogr Ann 81A:443–458

    Article  Google Scholar 

  • Gould SJ (1988) Wonderful life. The burgess shale and the nature of history. Penguin Books, London

    Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiol 8:4–15

    Google Scholar 

  • Grant PR, Grant BR (2008) How and why species multiply. The radiation of Darwin’s Finches. Princeton University Press, Princeton

    Google Scholar 

  • Grime J (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Groves RH (1991) The biogeography of mediterranean plant invasions. In: Groves RH, di Castri F (eds) Biogeography of mediterranean invasions. Cambridge University Press, Cambridge, UK, pp 427–438

    Google Scholar 

  • Groves RH, Kilby MJ (1993) Introduced flora of mediterranean-climate regions—convergence or divergence? In: Tharnoss CA (ed) Proceedings of the Sixth International Conference on Mediterranean Climate Ecosystems. Maleme, Crete, pp 351–356

    Google Scholar 

  • Gurnis M, Muller RD, Moresi L (1998) Cretaceous vertical motion of Australia and the Australian-Antarctic discordance. Science 279:1499–1504

    Article  PubMed  CAS  Google Scholar 

  • Hallam SJ (1975) Fire and Hearth, a study of Aboriginal usage and European usurpation in South-western Australia. Australian Institute of Aboriginal Studies, Canberra

    Google Scholar 

  • Hampe A (2004) Bioclimate envelope models: what they detect and what they hide. Global Ecol Biogeogr 13:469–476

    Article  Google Scholar 

  • Hardy CR, Linder HP (2005) Intraspecific variability and timing in ancestral ecology reconstruction: a test case from the Cape flora. Syst Biol 54:299–316

    Article  PubMed  Google Scholar 

  • Harrison S, Viers JH, Thorne JH, Grace JB (2008) Favorable environments and the persistence of naturally rare species. Cons Lett 1:65–74

    Article  Google Scholar 

  • Harvey PH, Pagel M (1991) The Comparative Method in Evolutionary Biology. OxfordUniv Press, Oxford

    Google Scholar 

  • He T, Krauss SL, Lamont BB, Miller BP, Enright NJ (2004) Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data. Mol Ecol 13:1099–1109

    Article  PubMed  CAS  Google Scholar 

  • He T, Lamont BB, Krauss SL, Enright NJ, Miller BP (2008) Covariation between intraspecific genetic diversity and species diversity within a plant functional group. J Ecol 96:956–961

    Article  Google Scholar 

  • He T, Lamont BB, Krauss SL, Enright NJ, Miller BP, Gove AD (2009) Ants cannot account for interpopulation dispersal of the arillate pea Daviesia triflora. New Phytol 181:725–733

    Article  PubMed  Google Scholar 

  • Herrera CM (1992) Historical effects and sorting processes as explanations for contemporary ecological patterns: character syndromes in Mediterranean woody plants. Amer Nat 140:421–446

    Article  Google Scholar 

  • Hesse PP, McTainsh GH (2003) Australian dust deposits: modern processes and the Quaternary record. Quat Sci Rev 22:2007–35

    Article  Google Scholar 

  • Heubl G, Bringmann G, Meimberg H (2006) Molecular phylogeny and character evolution of carnivorous plant families in Caryophyllales—revisited. Pl Biol 8:821–830

    Article  CAS  Google Scholar 

  • Hill RS (1998) Fossil evidence for the onset of xeromorphy and scleromorphy in Australian Proteaceae. Austral Syst Bot 11:391–400

    Article  Google Scholar 

  • Hill RS, Brodribb TJ (2001) Macrofossil evidence for the onset of xeromorphy in Australian Casuarrinaceae and tribe Banksieae (Proteaceae). J Medit Ecol 2:127–136

    Google Scholar 

  • Hill MO, Roy DB, Thompson K (2002) Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. J Appl Ecol 39:708–720

    Article  Google Scholar 

  • Hilton-Taylor C (1996) Patterns and characteristics of the flora of the Succulent Karoo Biome, southern Africa. In: van der Maesen LJE, van der Bergt XM, van Medenbach de Rooy JM (eds) The biodiversity of African plants. Kluwer, Dordrecht, pp 58-72

  • Hobbs RJ, Atkins L (1991) Interactions between annuals and woody perennials in a Western Australian nature reserve. J Veg Sci 2:643–654

    Article  Google Scholar 

  • Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Phil Trans R Soc B 363:543–555

    Article  PubMed  Google Scholar 

  • Holmes PM, Richardson DM (1999) Protocols for restoration based on recruitment dynamics, community structure, and ecosystem function: perspectives from South African fynbos. Rest Ecol 7:215–230

    Article  Google Scholar 

  • Holmes PM, Richardson DM, van Wilgen BW, Gelderblom C (2000) Recovery of South African fynbos vegetation following alien woody plant clearing and fire: implications for restoration. Austral Ecol 25:631–639

    Google Scholar 

  • Hopper SD (1977) The structure and dynamics of a hybrid population of Anigozanthos manglesii D. Don and A. humilis Lindl. Austral J Bot 25:413–422

    Article  Google Scholar 

  • Hopper SD (1978) An experimental study of competitive interference between Anigozanthos manglesii D. Don, A. humilis Lindl. and their hybrids (Haemodoraceae). Austral J Bot 26:807–817

    Article  Google Scholar 

  • Hopper SD (1979) Biogeographical aspects of speciation in the south west Australian flora. Annu Rev Ecol Syst 10:399–422

    Article  Google Scholar 

  • Hopper SD (1997) An Australian perspective on plant conservation biology in practice. In: Fiedler PL, Kareiva PM (eds) Conservation biology for the coming decade. Chapman and Hall, New York, pp 255–278

    Google Scholar 

  • Hopper SD (2002) Weeds on granite outcrops in temperate Australia, South Africa and the USA. In: Jacob HP, Dodd J, Moore J (eds) Weeds threats now and forever 13th Australian Weeds Conference Papers & Proceedings. Plant Protection Society of WA, Perth, pp 96–99

    Google Scholar 

  • Hopper SD (2003) An evolutionary perspective on south-west Western Australian landscapes, biodiversity and fire: a review and management implications. In: Abbott I, Burrows N (eds) Fire in ecosystems of South-west Western Australia: impacts and management. Backhuys, Leiden, pp 9–35

    Google Scholar 

  • Hopper SD (2005) Deserts through time. In: Nikulinsky P, Hopper SD (eds) Soul of the desert. Fremantle Arts Centre, Fremantle, pp 10–23

    Google Scholar 

  • Hopper SD (2007) New life for systematics. Science 316:1097

    Article  PubMed  CAS  Google Scholar 

  • Hopper SD, Barlow BA (2000) Sidney Herbert James 1933–1998. Austral J Bot 48:287–295

    Article  Google Scholar 

  • Hopper SD, Brown AP (2007) A revision of Australia’s hammer orchids (Drakaea: Orchidaceae), with some field data on species-specific sexually deceived wasp pollinators. Austral Syst Bot 20:252–285

    Article  Google Scholar 

  • Hopper SD, Campbell NA (1977) A multivariate morphometric study of species relationships in kangaroo paws (Anigozanthos Labill. and Macropidia Drumm. ex Harv. : Haemodoraceae). Austral J Bot 25:523–544

    Article  Google Scholar 

  • Hopper SD, Gioia P (2004) The Southwest Australian Floristic Region: evolution and conservation of a global hot spot of biodiversity. Annu Rev Ecol Syst 35:623–650

    Article  Google Scholar 

  • Hopper SD, Lambers H (2009) Darwin as a plant scientist: a Southern Hemisphere perspective. Trends Plt Sci, in press

  • Hopper SD, van Leeuwen S, Brown AP, Patrick SJ (1990) Western Australia’s endangered flora. Dept Conservation Land Management, Perth, p 140

    Google Scholar 

  • Hopper SD, Harvey MS, Chappill JA, Main AR, Main BY (1996) The Western Australian biota as Gondwanan Heritage—a review. In: Hopper SD, Chappill JA, Harvey MS, George AS (eds) Gondwanan Heritage: past, present and future of the Western Australian Biota. Surrey Beatty & Sons, Chipping Norton, NSW, pp 1–46

    Google Scholar 

  • Hopper SD, Brown AP, Marchant NG (1997) Plants of Western Australian granite outcrops. J Roy Soc West Austral 80:141–158

    Google Scholar 

  • Hopper SD, Smith RJ, Fay MF, Manning JC, Chase MW (2009) Molecular phylogenetics of Haemodoraceae in the Greater Cape and Southwest Australian Floristic Regions. Mol Phylogenet Evol 51:19–30

    Article  PubMed  CAS  Google Scholar 

  • Hörandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171:525–538

    PubMed  Google Scholar 

  • Horton DR (2000) The pure state of nature: sacred cows, destructive myths and the environment. Allen & Unwin, Sydney

    Google Scholar 

  • Horwitz P, Bradshaw D, Hopper SD, Davies P, Froend R, Bradshaw F (2008) Hydrological change escalates risk of ecosystem stress in Australia’s threatened biodiversity hotspot. J R Soc West Austral 91:1–11

    Google Scholar 

  • Houghton J (2004) Global warming the complete briefing, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Huber O (1995a) Vegetation. Fl Ven Guy 1:97–160

    Google Scholar 

  • Huber O (1995b) Conservation of the Venezuelan Guyana. Fl Ven Guy 1:193–218

    Google Scholar 

  • Huber O (2006) Herbaceous ecosystems on the Guayana Shield, a regional overview. J Biogeogr 33:464–475

    Article  Google Scholar 

  • Hussey BMJ, Keighery GJ, Dodd J, Lloyd SG, Cousens RD (2007) Western weeds a guide to the weeds of Western Australia, 2nd edn. Weeds Society of Western Australia, Perth

    Google Scholar 

  • Jahn B, Donner B, Muller PJ, Rohl U, Schneider RR, Wefer G (2003) Pleistocene variations in dust input and marine productivity in the northern Benguela current: evidence of evolution of global glacial-interglacial cycles. Palaeogeograph Palaeoclimatol Palaeoecol 193:515–533

    Article  Google Scholar 

  • James SH (1992) Inbreeding, self-fertilisation, lethal genes and genomic coalescence. Heredity 68:449–456

    Google Scholar 

  • James SH (2000) Genetic systems in the south-west flora: implications for conservation strategies for Australian plant species. Austral J Bot 48:341–347

    Article  Google Scholar 

  • James SH, Keighery GJ, Moorrees A, Waycott M (1999) Genomic coalescence in a population of Laxmannia sessiliflora (Angiospermae, Anthericaceae): an association of lethal polymorphism, self-pollination and chromosome number reduction. Heredity 82:364–372

    Article  PubMed  Google Scholar 

  • Janssen T, Bremer K (2004) The age of major monocot groups inferred from 800+ rbcL sequences. Bot J Linn Soc 146:385–398

    Article  Google Scholar 

  • Jansson R (2003) Global patterns in endemism explained by past climate change. Proc R Soc Lond [Biol] 270:583–590

    Article  Google Scholar 

  • Jansson R, Davies TJ (2008) Global variation in diversification rates of flowering plants: energy vs. climate change. Ecol Lett 11:173–183

    PubMed  Google Scholar 

  • Jansson R, Dynesius M (2002) The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu Rev Ecol Syst 33:741–777

    Article  Google Scholar 

  • Jarvis C (2007) Order out of chaos: linnaean plant names and their types. The Linnean Society of London, London

    Google Scholar 

  • Johansen D, Latta RG (2003) Mitochondrial haplotype distribution, seed dispersal and patterns of postglacial expansion of ponderosa pine. Mol Ecol 12:293–298

    Article  PubMed  CAS  Google Scholar 

  • Johnson SD (2006) Pollinator-driven speciation in plants. In: Harder LD, Barrett SCH (eds) The ecology and evolution of flowers. Oxford University Press, Oxford, UK, pp 296–306

    Google Scholar 

  • Johnson SD, Steiner KE (2003) Specialized pollination systems in southern Africa. S Afr J Sci 99:345–348

    Google Scholar 

  • Keighery GJ, Halse SA, Harvey MS, McKenzie NL (eds) (2004) A biodiversity survey of the Western Australian agricultural zone. Records of the WA Museum, Supplement No. 67, Welshpool

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kemper J, Cowling RM, Richardson DM (1999) Fragmentation of South African renosterveld shrublands: effects on plant community structure and conservation implications. Biol Cons 90:103–111

    Article  Google Scholar 

  • Kennington WJ, James SH (1997) Contrasting patterns of clonality in two closely related mallee species from Western Australia, Eucalyptus argutifolia and E. obtusiflora (Myrtaceae). Austral J Bot 45:679–689

    Article  Google Scholar 

  • Keynes RD (ed) (1988) Charles Darwin’s beagle diary. Cambridge University Press, Cambridge

    Google Scholar 

  • Keynes RD (2002) Fossils, finches and Fuegians. Oxford University Press, Oxford

    Google Scholar 

  • King LC (1962) Morphology of the earth. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Kinnear JE, Onus ML, Sumner NR (1998) Fox control and rock-wallaby population dynamics—II. An update. Wildl Res 25:81–88

    Article  Google Scholar 

  • Kinnear JE, Main AR (1979) Niche theory and macropodid nutrition. J Roy Soc WestAustral 62:65–74

    Google Scholar 

  • Kinnear JE, Cockson A, Christensen PES, Main AR (1979) The nutritional biology of the ruminants and ruminant-like animals—a new approach. Comp Biochem Physiol 64A:357–365

    Article  Google Scholar 

  • Klak C, Reeves G, Hedderson T (2004) Unmatched tempo of evolution in Southern African semi-desert ice plants. Nature 427:63–65

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, Wheeler Q (eds) (2009) Letters to Linnaeus. The Linnean Society of London, London

    Google Scholar 

  • Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190

    Article  PubMed  CAS  Google Scholar 

  • Knowles LL (2001) Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshoppers. Mol Ecol 10:691–701

    Article  PubMed  CAS  Google Scholar 

  • Koch JM, Hobbs RJ (2007) Synthesis: Is Alcoa successfully restoring a Jarrah forest ecosystem after bauxite mining in Western Australia? Rest Ecol 15:S137–S144

    Google Scholar 

  • Koerner L (1999) Linnaeus nature and nation. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Krauss SL, He T (2006) Rapid genetic identification of local provenance seed collection zones for ecological restoration and biodiversity conservation. J Nat Cons 14:190–199

    Article  Google Scholar 

  • Krauss SL, Hermanutz L, Hopper SD, Coates DJ (2007) Population-size effects on seeds and seedlings from fragmented eucalypt populations: implications for seed sourcing for ecological restoration. Austral J Bot 55:390–399

    Article  Google Scholar 

  • Krauss SL, He T, Barrett LG, Lamont BB, Enright NJ, Miller BP, Hanley ME (2009) Contrasting impacts of pollen and seed dispersal on spatial genetic structure in the bird-pollinated Banksia hookeriana. Heredity 102:274–285

    Article  PubMed  CAS  Google Scholar 

  • Lambers H, Shane MW (2007) Phosphorus nutrition of Australian Proteaceae and Cyperaceae: a strategy on old landscapes with prolonged oceanically buffered climates. S Afr J Bot 73:274–275

    Article  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer-Verlag, New York

    Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Lamont B (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia. Bot Rev 48:597–689

    Article  CAS  Google Scholar 

  • Lavergne S, Thompson JD, Garnier E, Debussche M (2004) The biology and ecology of narrow endemic and widespread plants: a comparative study of trait variation in 20 congeneric pairs. Oikos 107:505–518

    Article  Google Scholar 

  • Lavers C, Field R (2006) A resource-based conceptual model of plant diversity that reassesses causality in the productivity—diversity relationship. Global Ecol Biogeogr 15:213–224

    Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  PubMed  CAS  Google Scholar 

  • Levy DJ, Bolker BM, Tewksbury JJ, Sargent S, Haddad NM (2005) Response. Science 310:779–780

    Article  Google Scholar 

  • Linder HP (2005) Evolution of diversity: the Cape flora. Trends Plant Sci 10:536–541

    PubMed  CAS  Google Scholar 

  • Lindsay AM (1985) Are Australian soils different? In Dodson JR, Westoby M, eds, Are Australian Ecosystems Different? Proc Ecol Soc Austral 14:83–97

  • Lusk C, Bellingham P (2004) Austral challenges to northern hemisphere orthodoxy IV Southern Connections Conference: towards a southern perspective, Cape Town, South Africa, January 2004. New Phytol 162:248–251

    Article  Google Scholar 

  • Lynch M (1984) Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Quart Rev Biol 59:257–290

    Article  Google Scholar 

  • Magallón S, Castillo A (2009) Angiosperm diversification through time. Am J Bot 96:349–365

    Article  Google Scholar 

  • Main AR (1996) Ghosts of the past: Where does environmental history begin? Envir Hist 2:297–114

    Google Scholar 

  • Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah L (2006) Global warming and extinctions of endemic species from Biodiversity Hotspots. Conserv Biol 20:538–548

    Article  PubMed  Google Scholar 

  • Martin H (2006) Cenozoic climatic change and the development of the arid vegetation in Australia. J Arid Envir 66:533–563

    Article  Google Scholar 

  • McComb JA (1966) The sex forms of species in the flora of the south-west of Western Australia. Austral J Bot 14:303–316

    Article  Google Scholar 

  • Midgley GF, Thuiller W (2005) Global environmental change and the uncertain fate of biodiversity. New Phytol 167:638–641

    Article  PubMed  Google Scholar 

  • Migoń P, Lidmar-Bergström K (2002) Deep weathering through time in central and northwestern Europe: problems of dating and interpretation of geological record. Catena 49:25–40

    Article  Google Scholar 

  • Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151

    Article  PubMed  Google Scholar 

  • Miller JR (2006) Restoration, reconciliation, and reconnecting with nature nearby. Biol Conserv 127:356–361

    Article  Google Scholar 

  • Miller G, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2005) The Phanerozoic record of global sea-level change. Science 310:1293–1298

    Article  PubMed  CAS  Google Scholar 

  • Minnich RA (2008) California’s fading wildflowers lost legacy and biological invasions. Univ Calif Press, Berkeley

    Google Scholar 

  • Mishler BD (2000) The need for integrated studies of the California flora. Madroño 47:803–858

    Google Scholar 

  • Mountain A (2003) The first people of the cape. A look at their history and the impact of colonization on the Cape’s indigenous people. David Philip, Claremont South Africa

    Google Scholar 

  • Mulcahy MJ (1967) Landscapes, laterites and soils in southwestern Australia. In: Jennings JN, Mabbutt JA (eds) Landform studies from Australia and New Guinea. Aust Natl Univ Press, Canberra, pp 211–230

    Google Scholar 

  • Murphy DD (1989) Conservation and confusion: wrong species, wrong scale, wrong conclusions. Conserv Biol 3:82–84

    Article  Google Scholar 

  • Murphy MT, Garkaklis MJ, Hardy GESJ (2005) Seed caching by woylies Bettongia penicillata can increase sandalwood Santalum spicatum regeneration in Western Australia. Austral Ecol 30:747–755

    Article  Google Scholar 

  • Nickrent DL, Duff RJ, Colwell AE, Wolfe AD, Young ND, Steiner KE, dePamphilis CW (1998) Molecular phylogenetic and evolutionary studies of parasitic plants. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer, Boston, pp 211–241

    Google Scholar 

  • Nikulinsky P, Hopper SD (2008) Life on the rocks. The art of survival, 2nd edn. Fremantle Arts Centre, Fremantle

    Google Scholar 

  • Nilsson MA, Arnason U, Spencer PBS, Janke A (2004) Marsupial relationships and a timeline for marsupial radiation in South Gondwana. Gene 340:189–196

    Article  PubMed  CAS  Google Scholar 

  • Ohlemüller R, Gritti ES, Sykes MT, Thomas CD (2006) Towards European climate risk surfaces: the extent and distribution of analogous and non-analogous climates 1931–2100. Global Ecol Biogeogr 15:395–405

    Article  Google Scholar 

  • Orians GH, Milewski AV (2007) Ecology of Australia: the effects of nutrient-poor soils and intense fires. Biol Rev 82:393–423

    Article  PubMed  Google Scholar 

  • Ottewell KM, Donnellan SC, Lowe AJ, Paton DC (2009) Predicting reproductive success of insect- versus bird-pollinated scattered trees in agricultural landscapes. Biol Cons 142:888–898

    Article  Google Scholar 

  • Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm for plants. J Ecol 94:1233–1248

    Article  Google Scholar 

  • Parkington J (2006) Shorelines, strandlopers and shell middens archaeology of the Cape coast. Krakadouw Trust, Cape Town

    Google Scholar 

  • Parsons RF, Hopper SD (2003) Monocotyledonous geophytes: comparison of south-western Australia with other areas of mediterranean climate. Austral J Bot 51:129–133

    Article  Google Scholar 

  • Pate JS (1989) Australian micro stilt plants. Trends Ecol Evol 4:45–49

    Article  Google Scholar 

  • Pate JS, Verboom WH (2009) Contemporary biogenic formation of clay pavements by eucalypts: further support for the phytotarium concept. Ann Bot 103:673–685

    Article  PubMed  Google Scholar 

  • Pate JS, Weber G, Dixon KW (1984) Growth and life form of kwongan species. In: Pate JS, Beard JS (eds) Kwongan—plant life of the sandplain. University of Western Australia Press, Nedlands, Perth, pp 84–100

    Google Scholar 

  • Pate JS, Verboom WH, Galloway PD (2001) Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships? Austral J Bot 49:529–560

    Article  CAS  Google Scholar 

  • Pauw A (2007) Collapse of a pollination web in small conservation areas. Ecol 88:1759–1769

    Article  Google Scholar 

  • Peakall R, Ebert D, Scott LJ, Meagher PF, Offord CA (2003) Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Mol Ecol 12:2331–2343

    Article  PubMed  CAS  Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu J-L, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck G, Demesure-Musch B, Palme A, Martın JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  PubMed  CAS  Google Scholar 

  • Phillips RD, Hopper SD, Dixon KW (2009) Pollination ecology, floral evolution and the possible impact of climate change in the Southwest Australian Biodiversity Hotspot. J Roy Soc, in press

  • Pillans B (2007) Pre-quaternary landscape inheritance in Australia. J Quat Sci 22:439–447

    Article  Google Scholar 

  • Polhill R, Wiens D (1998) Mistletoes of Africa. Royal Botanic Gardens, Kew

    Google Scholar 

  • Poot P, Lambers H (2003) Are trade-offs in allocation pattern and root morphology related to species abundance? A congeneric comparison between rare and common species in the south-western Australian flora. J Ecol 91:58–67

    Article  Google Scholar 

  • Poot P, Lambers H (2008) Shallow-soil endemics: adaptive advantages and constraints of a specialized root-system morphology. New Phytol 178:371–381

    Article  PubMed  Google Scholar 

  • Press MC, Graves J (eds) (1995) Parasitic plants. Chapman and Hall, London, UK

    Google Scholar 

  • Pressey RL, Cowling RM, Rouget M (2003) Formulating conservation targets for biodiversity pattern and process in the Cape Floristic Region, South Africa. Biol Cons 112:99–127

    Article  Google Scholar 

  • Proches S, Cowling RM, du Preez DR (2005a) Patterns of geophyte diversity and storage organ size in the winter-rainfall region of southern Africa. Divers Distrib 11:101–109

    Article  Google Scholar 

  • Proches S, Wilson JR, Veldtman R, Kalwij JM, Richardson DM, Chown SL (2005b) Landscape corridors: possible dangers? Science 310:778–779

    Article  Google Scholar 

  • Qian H, Ricklefs RE (2000) Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407:180–182

    Article  PubMed  CAS  Google Scholar 

  • Ramirez N (1993) Reproductive biology in a tropical shrubland of Venezuelan Guayana. J Veg Sci 4:5–12

    Article  Google Scholar 

  • Raven PR, Axlerod DI (1978) Origin and relationships of the California flora. Univ Cal Publ Bot 72:1–134

    Google Scholar 

  • Read J, Sanson GD, Caldwell E, Clissold FJ, Chatain A, Peeters P, Lamont BB, De Garine-Wichatitsky M, Jaffré T, Kerr S (2009) Correlations between leaf toughness and phenolics among species in contrasting environments of Australia and New Caledonia. Ann Bot 103:757–767

    Article  PubMed  CAS  Google Scholar 

  • Rebelo AG (1987) Bird pollination in the Cape Flora. In: Rebelo AG (ed) A preliminary synthesis of pollination biology in the Cape Flora,. South African National Scientific Programmes Report No 141. Foundation for Research Development, CSIR, Pretoria, pp 83–108

  • Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci 34:419–466

    Article  CAS  Google Scholar 

  • Renner SS (1989) Floral biological observations on Heliamphora tatei (Sarraceniaceae) and other plants from Cerro de la Neblina in Venezuela. P1ant Syst Evol 163:21–29

    Article  Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606

    Article  Google Scholar 

  • Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15

    Article  Google Scholar 

  • Rivadavia F, Kondo K, Kato M, Hasebe M (2003) Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA sequences. Am J Bot 90:123–130

    Article  CAS  Google Scholar 

  • Rokich DP, Dixon KW, Sivasithsamparam K, Meney KA (2000) Topsoil handling and storage effects on woodland restoration in Western Australia. Restor Ecol 8:196–208

    Article  Google Scholar 

  • Ronce O, Perret F, Oliveri I (2000) Landscape dynamics and evolution of colonizer syndromes: interactions between reproductive effort and dispersal in a metapopulation. Evol Ecol 14:233–260

    Article  Google Scholar 

  • Rossetto M, Lucarotti SF, Hopper SD, Dixon KW (1997) DNA fingerprinting of Eucalyptus graniticola: a critically endangered relict species or a rare hybrid. Heredity 79:310–318

    Article  CAS  Google Scholar 

  • Rowe KC, Heske EJ, Brown PW, Paige KN (2004) Surviving the ice: Northern refugia and postglacial colonization. Proc Nat Acad Sci USA 101:10355–10359

    Article  PubMed  CAS  Google Scholar 

  • Rull V (1999) A palynological record of a secondary succession after fire in the Gran Sabana, Venezuela. J Quat Sci 14:37–152

    Article  Google Scholar 

  • Rull V, Vegas-Vilarrubia T (2006) Unexpected biodiversity loss under global warming in the neotropical Guayana Highlands: a preliminary appraisal. Glob Chang Biol 12:1–9

    Article  Google Scholar 

  • Sauberer N, Zulka KP, Abensperg-Traun M, Berg H-M, Bieringer G, Milasowszky N, Moser D, Plutzar C, Pollheimer M, Storch C, Tröst R, Zechmeister H, Grabherr G (2004) Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biol Conserv 117:181–190

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1990) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Schonswetter P, Stehlik I, Holderegger R, Tribisch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol 14:3547–3555

    Article  PubMed  CAS  Google Scholar 

  • Seddon G (1974) Xerophytes, xeromorphs and sclerophylls: the history of some concepts in ecology. Biol J Linn Soc 6:65–87

    Article  CAS  Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125

    Article  CAS  Google Scholar 

  • Shane MW, Dixon KW, Lambers H (2005) The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae). New Phytol 165:887–898

    Article  PubMed  CAS  Google Scholar 

  • Shearer BL, Crane CE, Cochrane A (2004) Quantification of the susceptibility of the native flora of the South-West Botanical Province, Western Australia, to Phytophthora cinnamomi. Austral J Bot 52:43–443

    Article  Google Scholar 

  • Shepherd KA, Waycott M, Calladine A (2004) Radiation of the Australian Salicornioideae (Chenopodiaceae)—based on evidence from nuclear and chloroplast DNA sequences. Am J Bot 91:1387–1397

    Article  CAS  Google Scholar 

  • Smith PJ (ed) (1989) The evolving earth. Equinox, Oxford

    Google Scholar 

  • Soderberg K, Compton JS (2007) Dust as a nutrient source for fynbos ecosystems, South Africa. Ecosystems 10:550–561

    Article  CAS  Google Scholar 

  • Soltis DE, Morris AB, Lachlan JSM, Manos PS, Soltis PM (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15:4261–4293

    Article  PubMed  Google Scholar 

  • Stebbins GL (1952) Aridity as a stimulus to evolution. Am Nat 86:33–44

    Article  Google Scholar 

  • Stebbins GL, Major J (1965) Endemism and speciation in California flora. Ecol Monogr 35:1–35

    Article  Google Scholar 

  • Steiner KE (1987) Breeding systems in the Cape flora. In: Rebelo AG (ed) A Preliminary Synthesis of Pollination Biology in the Cape Flora,. South African National Scientific Programmes Report No 141. Foundation for Research Development, CSIR, Pretoria, pp 22–51

  • Swarts ND, Sinclair EA, Krauss SL, Dixon KW (2009) Genetic diversity in fragmented populations of the critically endangered spider orchid Caladenia huegelii: implications for conservation. Conserv Genet, in press. doi:10.1007/s10592-008-9651-9

  • Swart BL, Tolley KA, Matthee CA (2009) Climate change drives speciation in the southern rock agama (Agama atra) in the Cape Floristic Region, South Africa. J Biogeogr 36:78–87

    Article  Google Scholar 

  • Sweedman L, Merrit D (eds) (2006) Australian seeds a guide to their collection, identification and biology. CSIRO Publishing, Melbourne, Botanic Gardens and Parks Authority, Perth, and Millennium Seed Bank, Royal Botanic Gardens, Kew

  • Swenson NG, Howard DJ (2005) Clustering of contact zones, hybrid zones and phylogeographic breaks in North America. Am Nat 166:581–591

    Article  PubMed  Google Scholar 

  • Thomson K (2009) The young Charles Darwin. Yale University Press, New Haven

    Google Scholar 

  • Tiffney BH (2008) Phylogeography, fossils, and Northern Hemisphere biogeography: The role of physiological uniformitarianism. Ann Miss Bot Gard 95:135–143

    Article  Google Scholar 

  • Turkington A, Phillips J, Campbell S (2005) Weathering and landscape evolution. Proceedings of the 35th Binghamton Symposium in Geomorphology, held 1–3 October, 2004. Elsevier, Amsterdam.

  • Twidale CR (1976) On the survival of paleoforms. Am J Sci 276:77–95

    Google Scholar 

  • Twidale CR (1982) Granite landforms. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Twidale CR (1997) The great age of some Australian landforms: examples of, and possible explanations for, landscape longevity. Geol Soc Lond Spec Publ 120:13–23

    Article  Google Scholar 

  • Twidale CR (2007) Ancient Australian landscapes. Rosenberg, Dural

    Google Scholar 

  • Underwood EC, Klausmeyer KR, Cox RL, Busby SM, Morrison SA, Shaw MR (2009a) Expanding the global network of protected areas to save the imperiled mediterranean biome. Cons Biol 23:43–52

    Article  Google Scholar 

  • Underwood EC, Viers JH, Klausmeyer KR, Cox RL, Shaw MR (2009b) Threats and biodiversity in the mediterranean biome. Diversity Distrib 15:188–197

    Article  Google Scholar 

  • Valiente-Banuet A, Rumebe AV, Verdú M, Callaway RM (2006) Modern quaternary plant lineages promote diversity through facilitation of ancient tertiary lineages. Proc Nat Acad Sci USA 103:16812–16817

    Article  PubMed  CAS  Google Scholar 

  • Vallance TG, Moore DT, Groves EW (compilers) (2001) Nature’s Investigator: The Diary of Robert Brown in Australia, 1801–1805. Australian Biological Resources Study, Canberra

    Google Scholar 

  • van der Niet T, Johnson SD (2009) Patterns of plant speciation in the Cape floristic region. Mol Phylog Evol 51:85–93

    Article  Google Scholar 

  • van Wilgen BW, Le Maitre DC, Cowling RM (1998) Ecosystem services, efficiency, sustainability and equity: South Africa’s working for water programme. Trends Ecol Evol 13:378

    Article  Google Scholar 

  • Verboom WH, Pate JS (2003) Relationships between cluster root-bearing taxa and laterite across landscapes in southwest Western Australia: an approach using airborne radiometric and digital elevation models. Plt Soil 248:321–333

    Article  CAS  Google Scholar 

  • Verboom WH, Pate JS (2006a) Bioengineering of soil profiles in semiarid ecosystems: the ‘phytotarium’ concept. A review. Plt Soil 289:71–102

    Article  CAS  Google Scholar 

  • Verboom WH, Pate JS (2006b) Evidence of active biotic influences in pedogenetic processes. Case studies from semiarid ecosystems of south-west Western Australia. Plt Soil 289:103–121

    Article  CAS  Google Scholar 

  • Verboom GA, Linder HP, Stock WD (2003) Phylogenetics of the grass genus Ehrharta: evidence for radiation in the summer-arid zone of the South African Cape. Evolution 57:1008–1021

    PubMed  Google Scholar 

  • Verboom GA, Archibald JK, Bakker FT, Bellstedt DU, Conrad F, Dreyer LL, Forest F, Galley C, Goldblatt P, Henning JF, Mummenhoff K, Linder HP, Muasya AM, Oberlander KC, Savolainen V, Snijman DA, van der Niet T, Nowell TL (2009) Origin and diversification of the Greater Cape flora: Ancient species repository, hot-bed of recent radiation, or both? Mol Phyl Evol 51:44–53

    Article  Google Scholar 

  • Vidal Romani JR, Twidale CR (2005) Landforms and geology of granite terrains. Taylor & Francis, Oxford

    Google Scholar 

  • Viles HA, Naylor LA, Carter NEA, Chaput D (2008) Biogeomorphological disturbance regimes: progress in linking ecological and geomorphological systems. Earth Surf Process Landforms 33:1419–1435

    Article  Google Scholar 

  • Vinogradov AE (2003) Selfish DNA is maladaptive: evidence from the plant Red list. Trends Genet 19:609–614

    Article  PubMed  CAS  Google Scholar 

  • Visser J (1981) South African parasitic flowering plants. Juta, Cape Town

    Google Scholar 

  • Vitousek P, Chadwick O, Matson P, Allison S, Derry L, Kettley L, Luers A, Mecking E, Monastra V, Porder S (2003) Erosion and the rejuvenation of weathering-derived nutrient supply in an old tropical landscape. Ecosystems 6:762–772

    Article  CAS  Google Scholar 

  • Wackernagel M, Schulz NB, Deumling D, Linares AC, Jenkins M, Kapos V, Monfreda C, Lohi J, Myers N, Norgaard R, Randers J (2002) Tracking the ecological overshoot of the human economy. Proc Natl Acad Sci USA 99:9266–9271

    Article  PubMed  CAS  Google Scholar 

  • Walker J, Reddell P (2007) Retrogressive succession and restoration on old landscapes. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecological succession. Springer-Verlag, New York, pp 69–89

    Chapter  Google Scholar 

  • Walker J, Thomson CH, Reddell P, Rapport DJ (2001) The importance of landscape age in influencing landscape health. Ecosyst Health 7:7–14

    Article  Google Scholar 

  • Watanabe K, Kosuge K, Shimamura R, Konishi N, Taniguchi K (2006) Molecular systematics of Australian Calotis (Asteraceae: Astereae). Austral Syst Bot 19:155–168

    Article  CAS  Google Scholar 

  • Watson JR (1991) The identification of river foreshore corridors for nature conservation in the South Coast Region of Western Australia. In: Saunders DA, Hobbs RJ (eds) Nature conservation 2: the role of corridors. Surrey Beatty & Sons, Chipping Norton NSW

    Google Scholar 

  • Waycott M, Walker DI, James SH (1996) Genetic uniformity in Amphibolis antarctica, a dioecious seagrass. Hered 76:578–585

    Article  Google Scholar 

  • Whelan RJ (1995) The Ecology of Fire. Cambridge University Press, Cambridge, Cambridge Studies in Ecology

    Google Scholar 

  • Whittaker RJ, Araújo MB, Jepson P, Ladle RJ, Watson JEM, Willis KJ (2005) Conservation Biogeography: assessment and prospect. Diversity Distrib 11:3–23

    Article  Google Scholar 

  • Widdowson M (1997) The geomorphological and geological importance of palaeosurfaces. Geol Soc Lond Spec Publ 120:1–12

    Article  Google Scholar 

  • Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19:639–644

    Article  PubMed  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539

    Article  Google Scholar 

  • Williams GC (1966) Adaptation and Natural Selection. Princeton University Press, Princeton, New Jersey, A critique of some current evolutionary thought

    Google Scholar 

  • Willis KJ, Niklas KJ (2004) The role of Quaternary environmental change in plant macroevolution: the exception or the rule? Phil Trans R Soc Lond B 359:159–172

    Article  Google Scholar 

  • Willson MF, Rice BL, Westoby M (1990) Seed dispersal spectra: a comparison of temperate plant communities. J Veg Sci 1:547–562

    Article  Google Scholar 

  • Wilson CA, Calvin CL (2007) An origin of aerial branch parasitisim in the mistletoe family, Loranthaceae. Am J Bot 93:787–796

    Article  Google Scholar 

  • Wisheu C, Rosenzweig ML, Olsvig-Whittaker L, Shmida A (2000) What makes nutrient-poor mediterranean heathlands so rich in plant diversity? Evol Ecol Res 2:935–955

    Google Scholar 

  • Yates CJ, Hopper SD, Brown A, van Leeuwen S (2003) Impact of two wildfires on endemic granite outcrop vegetation in Western Australia. J Veg Sci 14:85–194

    Article  Google Scholar 

  • Yates CJ, Ladd PG, Coates DJ, McArthur S (2007a) Hierarchies of cause: understanding rarity in an endemic shrub Verticordia staminosa (Myrtaceae) with a highly restricted distribution. Austral J Bot 55:194–205

    Article  Google Scholar 

  • Yates CJ, Elliott C, Byrne M, Coates DJ, Fairman R (2007b) Seed production, germinability and seedling growth for a bird-pollinated shrub in fragments of kwongan in south-west Australia. Biol Conserv 136:306–314

    Article  Google Scholar 

  • Yates CJ, Coates DJ, Elliott C, Byrne M (2007c) Composition of the pollinator community, pollination and the mating system for a shrub in fragments of species rich kwongan in south-west Western Australia. Biodivers Cons 16:1379–1395

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–93

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This paper is the culmination of four decades of wondering about and exploring the exceptionally rich endemic biota of the Southwest Australian Floristic Region and, more recently, that of the Greater Cape. I owe much to my teachers, especially Sid James, Bert Main, Hugh Paterson, George Seddon, Rowl Twidale and the many research collaborators, students and friends who have so warmly discussed ideas and pursued lines of research with me that collectively led to the present paper. I owe a special thanks to colleagues in South Africa who taught a complete novice so much in the field about the world’s richest temperate flora—John Manning, John Rourke, Richard Cowling, Dee Snijman, Colin Paterson-Jones, Koos Roux, Peter Goldblatt and others. My understanding of YODFEL biota in the Northern Hemisphere similarly has been enhanced through the privilege of working wih fine colleagues at the Royal Botanic Gardens, Kew and with its global collaborators. The realisation that things were different in the Southwest Australian Floristic Region and Greater Cape compared to what was mainstream in the literature from the Northern Hemisphere and eastern Australia was slow in coming (see Hopper (1979) for an early synthesis), but benefited from a degree of thinking and field exploration that few have the luxury or time to enjoy in this increasingly frenetic world. The ideas developed embryonically while I was a postgraduate student at The University of Western Australia, and then during employment with the Western Australian Herbarium, Department of Fisheries and Wildlife, Department of Conservation and Land Management, Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, and The University of Western Australia. It was over two years (2004–2006) at the last institution that the concepts of OCBILs and YODFELs crystallised, and I was able to present to several audiences seminars underpinning the present paper. I am grateful for invitations to deliver addresses on these ideas subsequently in 2007 at the 3rd Global Botanic Gardens Congress in Wuhan, China, at the Linnean Society’s Tercentenary celebratory conference in London on Unlocking the Past—Linnaean Collections past, present and future, at The Botanical Society of America’s Botany 2007 conference in Chicago, and at MEDECOS 2007 in Perth. In 2008, aspects of this paper were included in lectures on Haemodoraceae delivered to the Cape Biota Symposium at Drakensville, Kwa-zulu Natal, on OCBIL theory at the University of Texas at Austin, and in the Nancy T. Burbidge Memorial Lecture (entitled Old Australian landscapes yield new perspectives on biodiversity evolution and conservation) to the Australian Systematic Botany Society’s National Conference in Adelaide. In 2009 the theory was presented in a lecture to the University of Vienna’s Institute of Biodiversity. I have benefitted from many discussions with colleagues at these venues. Hans Lambers, Colin Yates, Mark Chase, Don Bradshaw, Pieter Poot, Rhian Smith and ten anonymous referees for three journals commented on previous drafts and materially helped improve the final paper. Peggy Fiedler’s thorough editing and critique were especially valuable. In having to consider such wide and generous input, the responsibility for ideas published herein nevertheless is mine alone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Hopper.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopper, S.D. OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322, 49–86 (2009). https://doi.org/10.1007/s11104-009-0068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0068-0

Keywords

Navigation