Skip to main content
Log in

Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The major constraints to nutrient uptake by vascular plants in mediterranean South Africa and Western Australia are: very infertile soils, relatively low temperatures when water availability is high, and hot, dry summers. These constraints are partly overcome through increased efficiency of uptake, tapping novel sources of nutrients, and prolonging water uptake. Absorptive area per unit “cost” may be enlarged directly through increased fineness of the root system and proliferation of long root hairs. This reaches its greatest development in the root clusters of the Proteaceae (proteoid roots), Restionaceae (“capillaroid” roots) and Cyperaceae (dauciform roots). Absorptive area is increased indirectly through fungal hyphae which extend from hairless rootlets into the soil. Two major groups can be recognised: general (VA mycorrhizas) and host-specific (ericoid, orchid and sheathing mycorrhizas). Mycorrhizas are the most widespread specialised modes of nutrition and are probably universal in such major taxa here asPodocarpus, Acacia, Fabaceae, Poaceae, Asteraceae, Rutaceae, terrestrial orchids, Ericales and Myrtaceae. General mycorrhizas are the least drought-adapted of mechanisms for maximising absorptive area. All have been implicated in enhancing P uptake through increasing access to inorganic P, solubilisation and shortening the diffusion path. However, selective uptake of other nutrients, especially N, by host-specific mycorrhizas may be equally important.

Included under novel sources of nutrients are free N2 (utilised by N2-fixing nodules), small-animal prey (carnivorous leaves) and persistent leaf bases (aerial roots ofKingia australis). Both legume and non-legume N2-fixing species are well-represented in these two regions, with stands of individual species in southwestern Australia estimated to contribute 2–19 kg N/ha/yr to the ecosystem. Free nitrogen fixation requires additional nutrients, especially Mo and Co, but is enhanced following fires and by supplementary uptake mechanisms, especially VA mycorrhizas. Southwestern Australia is particularly rich in carnivorous species. Nitrogen, P, K and S are important nutrients absorbed, with digestion aided by enzymes provided by bacteria and the glands. Parasitic plants both tap novel sources of nutrients and capitalise on any efficient water and nutrient uptake mechanisms of the hosts. Root parasites are better represented than stem parasites in mediterranean South Africa and Western Australia. Phosphorus and K in particular are absorbed preferentially by the haustoria, but much remains to be known about their modes of operation.

Maximum activity of all uptake mechanisms, except those attached to some deep-rooted plants, is restricted to winter-spring. Most new seasons’s rootlets and specialised roots are confined to the uppermost 15 cm of soil, especially in or near the decomposing litter zone. Nutrient uptake is further enhanced by the tendency for the rootlets to cluster, trapping water by capillary action and prolonging nutrient release. As an early product of decomposition, N tends to be available as NH4 (rather than NO3) and it is absorbed preferentially by almost all specialised modes of nutrition. Microorganisms are required in the formation and/or functioning of all these structures, except haustoria. Uptake mechanisms which are optional to the plant reach their peak contribution to the root system at soil nutrient levels well below those required for greatest plant growth, when they may be absent altogether. It is only over the narrow range of nutrient availability, where shoot content of a nutrient is greater in the presence of the mechanism than in its absence (other factors remaining constant), that specialised modes can be termed nutrient-uptake “strategies.”

For all specialised modes of nutrition, the component genera are better represented in these two regions than in the surrounding more fertile, arid to subtropical regions of much greater area. Endemism of species with each mode exceeds that for the two floras overall (75%). This is taken as preliminary evidence that specialised modes of nutrition are best represented in nutrient-poor soils. While they serve to limit nutrient loss from the ecosystem, their proliferation is therefore not necessarily a response to increasing “leaks” in the system.

A hierarchical scheme of the functional/structural relationships between the various mechanisms is presented, starting with the rootless, VA-mycorrhizal plant as the most primitive condition. Taxa with many of the specialised modes of nutrition at present in southwestern South Africa and Western Australia have been evident in the pollen record since the early Tertiary Period. The absence of ectomycorrhizal forests in mediterranean South Africa, in marked contrast to Western Australia, can be traced to differences in their paleohistory. In both regions, the combination of fluctuating, but essentially diminishing, nutrient and water availability that began with the first mediterranean climate < 5 million years ago resulted in decimation of the less-tolerant rainforest ancestors on the one hand, and remarkable rates of speciation of the pre-adapted sclerophyll nucleus on the other.

Abstrakt

Die Haupthindernisse der Nährstoffaufnahme der Kormophyten des Mittelmeerklimas Südafrikas und Westaustraliens sind sehr nahrungsarme Böden, relativ niedrige Temperaturen, wenn genügend Bodenwasser zur Verfügung steht und heisse, trockene Sommer. Diese Hindernisse werden zum Teil durch erhöhte Leistungsfähigkeit von Nährstoffaufnahme, Anzapfung verborgener Quellen von Nährstoffen und Erhöhung und Verlängerung der Wasseraufnahme überwunden. Die Absorptionsfläche kann direkt durch die Feinheit des Wurzelsystems und die Entwicklung langer Wurzelhaare vergrössert werden. Diese Situation ist am besten durch die Wurzelbüschel der Familie Proteaceae (proteoid Wurzeln), die Kapillarwurzeln der Familie Restionaceae und die dauciform Wurzeln der Familie Cyperaceae repräsentiert. Indirekte Erhöhung der Absorptionsfläche ist durch Pilzfäden, die sich von haarlosen Wurzeln im Boden ausbreiten, gewährleistet. Hierbei können zwei Hauptgruppen beobachtet werden: allgemeine (VA Mykorrhizen) und wirt-spezifische (Ericales-, Orchideen- und Hüllmykorrhizen). Mykorrhizen sind die am weitesten verbreiteten, spezialisierten Arten erhöhter Nährstoffaufnahme und sind wahrscheinlich universal inPodocarpus, Acacia, Fabaceae, Poaceae, Asteraceae, Rutaceae, Land Orchideen, Ericales und Myrtaceae. Der Nährstoffaufnahmemechanismus der VA Mykorrhyzen ist der am wenigsten trockenresistente. Alle Mykorrhyzen haben die Fähigkeit entwickelt, grössere Mengen von Phosphor durch vergrösserten Zugang, erhöhte Auflösung und Verkürzung des Aufnahmeweges von inorganischem Phosphor aufzunehmen. Im Falle der wirt-spezifischen Mykorrhyzen ist jedoch bevorzugte Aufnahme anderer Nährstoffe, vor allem Stickstoff, gleichgalls wichtig.

Andere Quellen der Nährstoffaufnahme sind freier Stickstoff (ausgenutzt von N2-Bakterien in Wurzelknollen), Kleintierbeute in Blättern von Carnivoren und beharrende Blattbasen (Luftwurzeln vonKingia australis). Beide Formen von Legume- und Nichtlegume-Fixierung von N2 sind in diesen beiden Gegenden gut vertreten. In Südwestaustralien können einzelne Formen zwischen 2–19 kg N/ha/Jahr dem Ökosystem zuführen. N2-Fixierung benötigt zusätzliche Nährstoffe, vor allem Mo und Co. Es ist erhöht nach Busch (Wald) bränden und durch spezielle Ergänzungsaufnahme, vor allem in VA Mykorrhizen.

Südwestaustralien im besonderen ist reich an Carnivoren Spezies: N, P, K und S sind wichtige Nährstoffe, die aufgenommen werden. Die Verdauung von Kleintieren wird durch Enzyme bewerkstelligt, die von Bakterien und Drüsen ausgeschieden werden. Parasitische Pflanzen zapfen neue Quellen von Nährstoffen an und werten auch alle Vorrichtungen des Wirtes in Bezug auf erhöhte Wasser- und Nährstoffaufnahme aus. In den Mittelmeerklimaten Südafrikas und Westaustraliens sind Wurzelparasiten häufiger als Stammparasiten. Besonders P und K werden von den Haustorien bevorzugt aufgenommen, jedoch mehr Forschung ist nötig, um den Aufnahmemechanismus zu verstehen.

Mit der Ausnahme von tief-wurzelnden Pflanzen, optimale Nährstoffaufnahme ist auf die Winter-Frühlingszeit beschränkt. Dabei entwickeln sich Fein- und Spezialwurzeln innerhalb der oberen 15 cm-Bodenschicht, vorzugsweise innerhalb oder nahebei der Verwitterungszone des Laubes. Nährstoffaufnahme ist weiterhin durch Büschelformation der Feinwurzeln—wobei Wasser durch Kapillaraktion festgehalten und die Dauer der Nährstoffaufnahme verlängert wird—gesteigert. Ein zeitiges Produkt der Verwesung ist NH4, welches von bald allen spezialisierten Formen eher aufgenommen wird als NO3. Mit Ausnahme der Haustorien der Parasiten alle oben erwähnten Aufnahmeformen von Nährstoffen benötigen die Gegenwart von Mikroorganism. Nährstoffaufnahmemechanismen, die nicht unbedingt für die Pflanze notwendig sind, erreichen ihre grösste Verbreitung in der Bodenschicht, die weniger Nährstoffe enthält. In Bodenschichten mit einem hohen Nährstoffgehalt sind diese Mechanismen oft abwesend. In bezug auf die Verfügbarkeit von Nährstoffen ist es nur ein enger Bereich, in dem der Stengelnährstoffgehalt in der Gegenwart eines Spezialaufnahmemechanismus grösser ist als in der Abwesenheit eines solchen (wenn andere Faktoren gleich sind). In solchen Fällen kann man von Nährstoff aufnahme ‘Strategien’ sprechen.

Alle Spezialnährstoffaufnahmemechanismen sind in beiden Gegenden wohlvertreten. Dies steht im Gegensatz zu den umgebenden fruchtbareren ariden und subtropischen Gegenden. Endemismus von Spezies mit diesen spezialen Aufnahmeeinrichtungen übertrifft die anderen Spezies (75%). Diese Feststellung mag wohl zeigen, dass Spezialformen der Nährstoffaufnahme am besten in nährstoffarmen Böden gedeihen. Während diese dazu dienen, den Verlust von Nährstoffen vom Ökosystem zu vermindern, ist ihre Verbreitung innerhalb des Ökosystems nicht notwendigerweise eine Reaktion von zunehmenden ‘Lücken’ des Systems.

Ein Hierarchie-Schema der funktionalen/strukturalen Verwandtschaft der verschiedenen Mechanismen ist gegeben, beginnend mit der wurzellosen VA-mykorrhyzal Pflanze als die primitivste. Taxa mit vielen der verschiedenen Mechanismen der Nährstoffaufnahme sind in Südafrika und Westaustralien seit dem Früh-Tertiär—dokumentiert durch Pollenfunde—vertreten. Die Abwesenheit von ektotrophen Mykorrhyza Wäldern im Mittelmeerklima Südafrikas, im Gegensatz zu denen in Westaustralien, konnte durch die Verschiedenheit der Plaläohistorie erklärt werden. Die Kombination von Schwankungen, besonders der Abnahme der zur Verfügung stehenden Nährstoffe und des Wassers, die mit dem ersten Mittelmeerklima vor ungefähr 5 Million Jahren begann, resultierte in dem Verschwinden der weniger toleranten Regenwald Vorfahren auf der einen Seite und der Bemerkenswerten Fähigkeit zur Spezialisierung der Pro-sklerophyten auf der anderen Seite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abott, L. K. andA. D. Robson. 1977. The distribution and abundance of vesicular-arbuscular endophytes in some Western Australian soils. Austral. J. Bot.25: 515–522.

    Article  Google Scholar 

  • ——. 1979. A quantitative study of the spores and anatomy of mycorrhizas formed by a species ofGlomus, with reference to its taxonomy. Austral. J. Bot.27: 363–375.

    Article  Google Scholar 

  • Adams, R. M. andG. W. Smith. 1977. An SEM survey of the five carnivorous pitcher plant genera. Amer. J. Bot.64: 265–272.

    Article  Google Scholar 

  • Adamson, R. S. 1931. Notes on some petrified wood from Banke, Namaqualand. Trans. Roy. Soc. South Africa19: 255–258.

    Google Scholar 

  • —. 1956. The South African species of Aizoaceae. III,Galenia L. J. South African Bot.22: 87–127.

    Google Scholar 

  • Ansiaux, J. R. 1958. Sur l’alimentation minérale des phanérogames parasites. Bull. Acad. Roy. Sci. Belg., Cl, Sci. 5 sér.44: 787–793.

    CAS  Google Scholar 

  • Armstrong, W. 1981. The water relations of heathlands: General physiological effects of waterlogging. Pages 111–122in R. L. Specht (ed.). Heathlands and related shrublands B. Analytical studies. Elsevier, Sci. Publ., Amsterdam.

    Google Scholar 

  • Asai, T. 1944. Über die Mykorrhizenbildung der Leguminosen-Pflanzen. Jap. J. Bot.13: 463–485 + figs.

    Google Scholar 

  • Aschmann, H. 1973. Distribution and peculiarity of mediterranean ecosystems. Pages 11–19in F. Di Castri and H. A. Mooney (eds.). Mediterranean-type ecosystems. Chapman and Hall, London.

    Google Scholar 

  • Ashford, A. E., M. Ling-Lee andG. A. Chilvers. 1975. Polyphosphate in eucalypt mycorrhizas: A cytochemical demonstration. New Phytol.74: 447–453.

    Article  CAS  Google Scholar 

  • Ashton, D. H. 1976. Studies on the mycorrhizae ofEucalyptus regnans F. Muell. Austral. J. Bot.24: 723–774.

    Article  Google Scholar 

  • Atsatt, P. R. 1973. Parasitic flowering plants: How did they evolve? Amer. Naturalist107: 502–510.

    Article  Google Scholar 

  • —. 1977. The insect herbivore as a predictive model in parasitic seed plant biology. Amer. Naturalist111: 579–586.

    Article  Google Scholar 

  • —,T. F. Hearn, R. L. Nelson andR. T. Heineman. 1978. Chemical induction and repression of haustoria inOrthocarpus purpurescens (Scrophulariaceae). Ann. Bot.42: 1177–1184.

    CAS  Google Scholar 

  • Axelrod, D. I. andP. H. Raven. 1978. Late Cretaceous and Tertiary vegetation history of Africa. Pages 77–130in M. J. Werger (ed.). Biogeography and ecology of southern Africa. W. Junk, The Hague.

    Google Scholar 

  • Azcón, R., C. Azcón-G. De Aquilar andJ. M. Barea. 1978. Effects of plant hormones present in bacterial cultures on the formation and responses of VA endomycorrhiza. New Phytol.80: 359–364.

    Article  Google Scholar 

  • Bagyaraj, D. J., A. Manjunath andR. B. Patil. 1979. Interaction between vesiculararbuscular mycorrhiza andRhizobium and their effects on soybean in the field. New Phytol.82: 141–145.

    Article  CAS  Google Scholar 

  • Baird, A. M. 1977. Regeneration after fire in King’s Park, Western Australia. J. Roy. Soc. Western Australia60: 1–22.

    Google Scholar 

  • Baker, E. G. 1921. Revision of South African species ofRhynchosia. Bothalia1: 113–138.

    Google Scholar 

  • Baker, H. A. andE. G. Oliver. 1967. Ericas in southern Africa. Purnell, Cape Town. 180 pp.

    Google Scholar 

  • Barlow, B. A. 1966. A revision of the Loranthaceae of Australia and New Zealand. Austral. J. Bot.14: 421–499.

    Article  Google Scholar 

  • — andD. Wiens. 1977. Host-parasite resemblance in Australian mistletoes: The case for cryptic mimicry. Evolution31: 69–84.

    Article  Google Scholar 

  • Barrow, N. J. 1977. Phosphorus uptake and utilization by tree seedlings. Austral. J. Bot.25: 571–584.

    Article  CAS  Google Scholar 

  • Bartlett, E. M. andD. H. Lewis. 1973. Surface phosphatase activity of mycorrhizal roots of beech. Soil Biol. Biochem.5: 249–257.

    Article  CAS  Google Scholar 

  • Baylis, G. T. 1967. Experiments on the ecological significance of phycomycetous mycorrhizas. New Phytol.66: 231–243.

    Article  Google Scholar 

  • —. 1970. Root hairs and phycomycetous mycorrhizas in phosphorus-deficient soils. Pl. &Soil33: 713–716.

    Article  Google Scholar 

  • —. 1972. Fungi, phosphorus and the evolution of root systems. Search3: 257–259.

    Google Scholar 

  • —. 1975. The magnolioid root and mycotrophy in root systems derived from it. Pages 373–389in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • —,R. F. McNabb andT. M. Morrison. 1963. The mycorrhizal nodules of podocarps. Trans. Brit. Mycol. Soc.46: 378–384.

    Google Scholar 

  • Beadle, N. C. 1964. Nitrogen economy in arid and semi-arid plant communities. III. The symbiotic nitrogen-fixing organisms. Proc. Linn. New South Wales89: 273–286.

    Google Scholar 

  • —. 1966. Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology47: 992–1007.

    Article  Google Scholar 

  • —. 1968. Some aspects of the ecology and physiology of Australian xeromorphic plants. Austral. J. Sci.30: 348–355.

    Google Scholar 

  • —. 1981. Origins of the Australian angiosperm flora. Pages 409–426in A. Keast (ed.). Ecological biogeography of Australia. W. Junk, The Hague.

    Google Scholar 

  • Beard, J. S. (ed.). 1970. A descriptive catalogue of West Australian plants. Ed. 2. Surrey, Beatty &Sons, Chipping Norton, N.S.W. 142 pp.

    Google Scholar 

  • —. 1977. Tertiary evolution of the Australian flora in the light of latitudinal movements of the continent. J. Biogeogr.4: 111–118.

    Article  Google Scholar 

  • Becking, J. H. 1970. Plant-endophyte symbiosis in non-leguminous plants. Pl. &Soil32: 611–654.

    Article  CAS  Google Scholar 

  • Beresford, R. T. 1979. Nutrient imbalances in tomato plants and acid phosphatase activity in the leaves. J. Sci. Food Agric.30: 275–280.

    Article  Google Scholar 

  • Bergersen, F. J. 1974. Formation and function of bacteroids. Pages 473–498in A. Quispel (ed.). The biology of nitrogen fixation. North-Holland Pub. Co., Amsterdam.

    Google Scholar 

  • —,G. S. Kennedy andW. Wittman. 1965. Nitrogen fixation in the coralloid roots ofMacrozamia communis L. Johnson. Austral. J. Biol. Sci.18: 1135–1142.

    CAS  Google Scholar 

  • Bhat, K. K. andP. H. Nye. 1973. Diffusion of phosphate to plant roots in soil. 1. Quantitative autoradiography of the depletion zone. Pl. &Soil38: 161–175.

    Article  CAS  Google Scholar 

  • —— andJ. P. Baldwin. 1976. Diffusion of phosphate to plant roots in soil. IV. The concentration distance profile in the rhizosphere of roots with root hairs in low-P soil. Pl. &Soil44: 63–72.

    Article  CAS  Google Scholar 

  • Bint, A. N. 1981. An early Pliocene pollen assemblage from Lake Tay, South-Western Australia, and its phytogeographic implications. Austral. J. Bot.29: 277–291.

    Article  Google Scholar 

  • Boerd, G. andS. Thien. 1979. Phosphatase activity and phosphorus availability in the rhizosphere of corn roots. Pages 231–242in J. L. Harley and R. S. Russell (eds.). The soil-root interface. Academic Press, London.

    Google Scholar 

  • Bond, G. 1957. The development and significance of the root nodules ofCasuarina. Ann. Bot.21: 373–380.

    Google Scholar 

  • —. 1974. Root-nodule symbiosis with actinomycete-like organisms. Pages 342–378in A. Quispel (ed.). The biology of nitrogen fixation. South-Holland Publishers, Amsterdam.

    Google Scholar 

  • —. 1976. The results of the IBP survey of root-nodule formation in non-leguminous angiosperms. Pages 443–474in P. S. Nutman (ed.). Symbiotic nitrogen fixation in plants. Cambridge University Press, London.

    Google Scholar 

  • — andG. D. Scott. 1955. An examination of some symbiotic systems for fixation of nitrogen. Ann. Bot.19: 67–77.

    Google Scholar 

  • Bowen, G. D. 1973. Mineral nutrient relations of ectomycorrhizae. Pages 151–205in G. C. Marks and T. T. Kozlowski (eds.). Ectomycorrhizae—Their ecology and physiology. Academic Press, New York.

    Google Scholar 

  • —. 1981. Coping with low nutrients. Pages 33–64in J. S. Pate and A. J. McComb (eds.). The biology of Australian plants. University of Western Australian Press, Perth.

    Google Scholar 

  • — andA. D. Rovira. 1966. Microbial factor in short term phosphate uptake studies with plant roots. Nature211: 665–666.

    Article  CAS  Google Scholar 

  • — andC. Theodorou. 1973. Growth of ectomycorrhizal fungi around seeds and roots. Pages 122–125in G. C. Marks and T. T. Kozlowski (eds.). Ectomycorrhizae—Their ecology and physiology. Academic Press, New York.

    Google Scholar 

  • Bowyer, J. W. andV. B. Skerman. 1968. Production of axenic cultures of soil-borne and endophytic blue-green algae. J. Gen. Microbiol.54: 299–306.

    PubMed  CAS  Google Scholar 

  • Brook, P. J. 1952. Mycorrhiza ofPernettya macrostigma. New Phytol.51: 388–397.

    Article  Google Scholar 

  • Bruce, A. N. 1907. On the activity of the glands ofByblis gigantea, Lindl. Notes Roy. Bot. Gard., Edinburgh4: 9–14.

    Google Scholar 

  • Caldwell, M. M. 1979. Root structure: The considerable cost of below ground function. Pages 408–427in O. T. Solbrig, J. Subodh, G. B. Johnson and P. H. Raven (eds.). Topics in plant population biology. MacMillan Press, London.

    Google Scholar 

  • Callow, J. A., L. C. Capaccio, G. Parish andP. B. Tinker. 1978. Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhizas. New Phytol.80: 125–134.

    Article  CAS  Google Scholar 

  • Campbell, E. O. 1963.Gastrodia minor Petrie, an epiparasite of Manuka. Trans. Roy. Soc. New Zealand, Bot.2: 73–81.

    Google Scholar 

  • —. 1964. The restiad peat bogs at Motumaoho and Moanatuatua. Trans. Roy. Soc. New Zealand, Bot.2: 219–227.

    Google Scholar 

  • —. 1981. The water relations of heathlands: Morphological adaptation to waterlogging. Pages 107–109in R. L. Specht (ed.). Heathlands and related shrublands of the world. B. Analytical studies. Elsevier Sci. Pub., Amsterdam.

    Google Scholar 

  • Carlquist, S. 1974. Island biology. Columbia Univ. Press, New York.

    Google Scholar 

  • Carr, D. J., S. G. M. Carr andW. R. Papst. 1979. Field studies on nitrogen fixation of Australian alpine soils and plants. Symposium in the biology of Australian native plants. University of Western Australia, Perth (abstract).

    Google Scholar 

  • Carrodus, B. B. 1967. Absorption of nitrogen by mycorrhizal roots of beech. II. Ammonia and nitrate as sources of nitrogen. New Phytol.66: 1–4.

    Article  CAS  Google Scholar 

  • Chambers, C. A., S. E. Smith andF. A. Smith. 1980. Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth ofTrifolium subterraneum. New Phytol.85: 47–62.

    Article  CAS  Google Scholar 

  • Chandler, G. E. andJ. W. Anderson. 1976a. Studies on the origin of some hydrolytic enzymes associated with the leaves and tentacles ofDrosera species and their role in heterotrophic nutrition. New Phytol.77: 51–62.

    Article  CAS  Google Scholar 

  • ——. 1976b. Studies on the nutrition and growth ofDrosera species with reference to the carnivorous habit. New Phytol.76: 129–141.

    Article  CAS  Google Scholar 

  • ——. 1976c. Uptake and metabolism of insect metabolites by leaves on tentacles ofDrosera species. New Phytol.77: 625–634.

    Article  CAS  Google Scholar 

  • Chapin, F. S. 1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst.11: 233–260.

    Article  CAS  Google Scholar 

  • Chapman, F. andI. Crespin. 1934. The palaeontology of the Plantagenet Beds of Western Australia. J. Roy. Soc. Western Australia20: 103–136.

    Google Scholar 

  • Chilvers, G. A. 1968. Low power electron microscopy of the root cap region of eucalypt mycorrhizas. New Phytol.67: 663–665.

    Article  Google Scholar 

  • —. 1973. Mycorrhizas and problems in association inEucalyptus L’Herit. Ph.D. Thesis, Australian National University, Canberra.

    Google Scholar 

  • — andL. D. Pryor. 1965. The structure of eucalypt mycorrhizas. Austral. J. Bot.13: 245–259.

    Google Scholar 

  • Chippendale, G. M. 1981. Distribution density ofEucalyptus species in Australia. Search12: 131–133.

    Google Scholar 

  • Chippindall, L. K. 1955. A guide to the identification of grasses in South Africa.In D. Meredith (ed.). The grasses and pastures of South Africa. Central News Agency, Cape Town.

    Google Scholar 

  • Christensen, P. 1979. Mycophagy (fungus consumption) by mammals in the southwest of Western Australia. Symposium on the biology of Australian native plants, University of Western Australia, Perth (abstract).

    Google Scholar 

  • Churchill, D. W. 1961. The Tertiary and Quaternary vegetation and climate in relation to the living flora in south western Australia. Ph.D. Thesis. University of Western Australia. Perth.

    Google Scholar 

  • Clarkson, D. T. 1969. Metabolic aspects of aluminium toxicity and some possible mechanisms for resistance. Pages 381–397in I. H. Rorison (ed.). Ecological aspects of the mineral nutrition of plants. Blackwell, Oxford.

    Google Scholar 

  • Coates-Palgrave, K. 1977. Trees of southern Africa. C. Struik Publishers, Cape Town.

    Google Scholar 

  • Codd, L. E. 1956. TheScholia species of southern Africa. Bothalia6: 515–533.

    Google Scholar 

  • Coetzee, J. A. 1978. Climatic and biological changes in south-western Africa during the late Cainozoic. Pages 13–29in E. M. van Zinderen Bakker and J. A. Coetzee (eds.). Palaeoecology of Africa and the surrounding islands. Vol. 10/11. Balkema, Rotterdam.

    Google Scholar 

  • Coley, P. G. F. andD. T. Mitchell. 1980. Distribution of soil fungi in a CapeErica heathland community. S. African J. Sci.76: 185.

    Google Scholar 

  • Cooke, T. 1912. Plantaginaceae. Pages 387–392in W. T. Thiselton-Dyer (ed.). Flora Capensis 5. Reeve, London.

    Google Scholar 

  • Cookson, I. C. 1954. The occurrence of an older Tertiary microflora in Western Australia. Austral. J. Sci.17: 37–38.

    Google Scholar 

  • Cooper, K. M. 1975. Growth responses to the formation of endotrophic mycorrhizas inSolanum, Leptospermum, and New Zealand ferns. Pages 391–408in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • — andP. B. Tinker. 1978. Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. New Phytol.81: 43–52.

    Article  CAS  Google Scholar 

  • Cowling, R. M. andB. M. Campbell. 1980. Convergence in vegetation structure in the mediterranean communities of California, Chile and South Africa. Vegetatio43: 191–198.

    Article  Google Scholar 

  • Cox, G. andP. B. Tinker. 1976. Translocation and transfer of nutrients in vesiculararbuscular mycorrhizas. I. The arbuscule and phosphorus transfer: A quantitative ultrastructural study. New Phytol.77: 371–378.

    Article  CAS  Google Scholar 

  • Crush, J. R. 1974. Plant growth responses to vesicular-arbuscular mycorrhiza. VII. Growth and nodulation of some herbage legumes. New Phytol.73: 743–750.

    Article  CAS  Google Scholar 

  • Daft, M. J. 1979. Effects of calcium, phosphorus and potassium on mycorrhizal plants. Pages 420–421in J. L. Harley and R. S. Russell (eds.). The soil-root interface. Academic Press, London.

    Google Scholar 

  • —,E. Hacskaylo andT. H. Nicolson. 1975. Arbuscular raycorrhizas in plants colonising cola spoils in Scotland and Pennsylvania. Pages 561–580in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press. London.

    Google Scholar 

  • Dahlgren, R. 1963. Studies onAspalathus. Phytogeographical aspects. Bot. Not.116: 431–472.

    Google Scholar 

  • —. 1970. Parallelism, convergence, and analogy in some South African genera of Leguminosae. Bot. Not.123: 551–568.

    Google Scholar 

  • Dakin, W. J. 1919. The West Australian pitcher plant (Cephalotus follicularis) and its physiology. J. Proc. Roy. Soc. Western Australia4: 37–53.

    Google Scholar 

  • Dart, P. J. 1974. The infection process. Pages 381–429in A. Quispel (ed.). The biology of nitrogen fixation. North-Holland Pub., Amsterdam.

    Google Scholar 

  • Davison, J. D. 1927. Celastraceae. Bothalia2: 289–346.

    Google Scholar 

  • Deacon, H. J. In press. Comparative evolution of mediterranean-type ecosystems: A southern perspective.In F. J. Kruger, D. T. Mitchell and J. N. Jarvis (eds.). Mediterranean ecosystems: The role of nutrients. Springer-Verlag, Berlin.

  • Dell, B. 1977. Distribution and function of resins and glandular hairs in West Australian plants. J. Roy. Soc. Western Australia59: 119–123.

    Google Scholar 

  • — andA. H. Burbidge. 1981. Notes on the biology ofPilostyles (Rafflesiaceae) in Western Australia. Western Australian Herbarium Research Notes5: 71–79.

    Google Scholar 

  • —,J. Kuo andG. J. Thomson. 1980. Development of proteoid roots inHakea obliqua R. Br. (Proteaceae) grown in water culture. Austral. J. Bot.28: 27–37.

    Article  Google Scholar 

  • De Luca, P., S. Sabato, A. Balduzzi andR. Nazzaro. 1980. Coralloid root regeneration onMacrozamia megagametophytes. Giorn. Bot. Ital.114: 271–275.

    Google Scholar 

  • De Winter, B. 1962. The South African Stipeae and Aristideae (Gramineae). Bothalia8: 201–404.

    Google Scholar 

  • —. 1963. Ebenaceae. Pages 54–99in R. A. Dyer, L. E. Codd and H. B. Rycroft (eds.). Flora of southern Africa 26. Dept. Agri. Tech. Serv., Pretoria, S. Africa.

    Google Scholar 

  • Dexheimer, J. 1978. Study of mucilage secretion by the cells of the digestive glands ofDrosera capensis L. Ultrastructural localization of neutral phosphatases and ATPases. Z. Pflanzenphysiol.86: 189–201.

    CAS  Google Scholar 

  • Diem, H. G., I. Gueye, V. Gianinazzi-Pearson, J. A. Fortin andF. R. Dommergues. 1981. Ecology of VA mycorrhizae in the tropics: The semi-arid zone of Senegal. Acta Oecol./ Oecol. Plant.2: 53–62.

    Google Scholar 

  • Dixon, K. W., J. S. Pate andW. J. Bailey. 1980. Nitrogen nutrition of the tuberous sundewDrosera erythrorhiza Lindl. with special reference to catch of arthropod fauna by its glandular leaves. Austral. J. Bot.28: 283–297.

    Article  CAS  Google Scholar 

  • Dodd, J. and E. M. Heddle. 1981. Root systems of some swamp and banksia woodland plants of the Swan Coastal Plain, Western Australia. Bull. Ecol. Soc. Austral. 11,4 (abstract).

    Google Scholar 

  • Dörr, I. 1975. Development of transfer cells in higher parasitic plants. Pages 177–186in S. Aronoff, J. Dainty, P. R. Gorham, L. M. Srivastava and C. A. Swanson (eds.). Phloem transport. Plenum Press, New York.

    Google Scholar 

  • Drew, M. C. andP. H. Nye. 1969. The supply of nutrient ions by diffusion to plant roots in soil. II. The effects of root hairs on the uptake of potassium by roots of rye grass (Lolium multiflorum). Pl. &Soil31: 407–424.

    Article  CAS  Google Scholar 

  • Doyle, J. A. 1978. Origin of angiosperms. Ann. Rev. Ecol. Syst.9: 365–392.

    Article  Google Scholar 

  • Dyer, R. A. 1963. Myrsinaceae. Pages 1–9in R. A. Dyer, L. E. Codd and H. B. Rycroft (eds.). Flora of southern Africa 26. Dept. Agri. Tech. Services, Pretoria, South Africa.

    Google Scholar 

  • —. 1975, 1976. The genera of South African flowering plants. Vol. 1,2. Dept. Agric. Tech. Services, Pretoria.

    Google Scholar 

  • Engin, M. andJ. I. Sprent. 1973. Effects of water stress on growth and nitrogen-fixing activity ofTrifolium repens. New Phytol.72: 117–126.

    Article  CAS  Google Scholar 

  • Erickson, R. 1968. Plants of prey in Australia. Lamp Paterson, Perth, West. Australia.

    Google Scholar 

  • Fineran, B. A. 1974. A study of “phloeotracheids” in haustoria of santalaceous root parasites using scanning electron microscopy. Ann. Bot.38: 937–946.

    Google Scholar 

  • —. 1979. Ultrastructure of differentiating graniferous tracheary elements in the haustorium ofExocarpus bidwillii (Santalaceae). Protoplasma98: 199–221.

    Article  Google Scholar 

  • — andS. Bullock. 1979. Ultrastructure of graniferous tracheary elements in the haustorium ofExocarpus bidwillii, a root hemi-parasite of the Santalaceae. Proc. Roy. Soc. London. Ser. B, Biol. Sci.204: 329–343.

    CAS  Google Scholar 

  • Finlayson, M. andA. J. McComb. 1978. Nitrogen fixation in wetlands of southwestern Australia. Search9: 98–99.

    Google Scholar 

  • Fitter, A. H. 1977. Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol.79: 119–125.

    Article  CAS  Google Scholar 

  • Forbes, H. M. 1930. The genusPsoralea Linn. Bothalia3: 116–136.

    Google Scholar 

  • —. 1948. A revision of the South African species of the genusTephrosia Pers. Bothalia4: 951–1006.

    Google Scholar 

  • Fraser, L. 1932. An investigation ofLobelia gibbosa andLobelia dentata. 1. Mycorrhiza, latex system and general biology. Linn. Soc. New South Wales57: 497–525.

    Google Scholar 

  • Gadgil, R. L. andP. W. Gadgil. 1971. Mycorrhiza and litter decomposition. Nature233: 133.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, C. A. 1948. Contributions florae australiae occidentalis XII. J. Roy. Soc. Western Australia34: 75–81.

    Google Scholar 

  • Gardner, W. R. 1960. Dynamic aspects of water availability in plants. Soil Sci.89: 63–73.

    Article  Google Scholar 

  • George, A. S. 1980.Rhizanthella gardneri R. S. Rogers—The underground orchid of Western Australia. Amer. Orchid Soc. Bull.49: 631–646.

    Google Scholar 

  • —. 1981. The genusBanksia L.f. (Proteaceae). Nuytsia3: 239–473.

    Google Scholar 

  • —,A. J. Hopkins andN. G. Marchant. 1979. The heathlands of Western Australia. Pages 211–320in R. L. Specht (ed.). Heathlands and associated shrublands. A descriptive study. Elsevier, Sci. Pub., Amsterdam.

    Google Scholar 

  • Gianinazzi, S., V. Gianinazzi-Pearson andJ. Dexheimer. 1979. Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. III. Ultrastructural localization of acid and alkaline phosphatase in onion roots infected byGlomus mosseae (Nicol. &Gerd.). New Phytol.82: 127–132.

    Article  CAS  Google Scholar 

  • Gibson, A. H. 1976. Recovery and compensation by nodulated legumes to environmental stress. Pages 405–420in P. S. Nutman (ed.). Symbiotic nitrogen fixation in plants. Cambridge University Press, Cambridge.

    Google Scholar 

  • Giddy, C. 1974. Cycads of South Africa. Purnell, Cape Town.

    Google Scholar 

  • Giessler, A. 1928. Einfluss von Salzlösungen auf die Stärheverarbeitung beiDrosera. Flora23: 133–190.

    Google Scholar 

  • Glassford, D. K. andL. P. Killigrew. 1976. Evidence for Quaternary extension of the Australian desert into south-western Australia. Search7: 394–396.

    Google Scholar 

  • ——. 1979. Evidence for repeated glacial-age aridities throughout southwestern Australia during late Cainozoic times. Page 82in Symposium on the biology of Australian native plants. University of Western Australia, Perth. (abstract)

    Google Scholar 

  • Glyphis, J., E. J. Mell andB. M. Campbell. 1978. Phytosociological studies on Table Mountain, South Africa: I. The Back Table. J. South African Bot.44: 281–289.

    Google Scholar 

  • Gobel, T. 1975. Some field observations onNuytsia floribunda (Labill.) R. Br. Western Australian Nat.29: 50–60.

    Google Scholar 

  • Goldblatt, P. 1978. An analysis of the flora of southern Africa: Its characteristics, relationships, and origins. Ann. Missouri Bot. Gard.65: 369–436.

    Article  Google Scholar 

  • Gray, L. E. andJ. W. Gerdemann. 1973. Uptake of sulphur-35 by vesicular-arbuscular myycorrhizae. Pl. &Soil39: 687–689.

    CAS  Google Scholar 

  • Green, P. S. 1976. Ecological and nutritional aspects of proteoid roots. Hons. Thesis, University Adelaide, S. Aust.

    Google Scholar 

  • Greenland, D. J. 1979. The physics and chemistry of the soil-root interface: Some comments. Pages 83–98in J. L. Harley and R. S. Russell (eds.). The soil-root interface. Academic Press, London.

    Google Scholar 

  • Grieve, B. J. andW. E. Blackall. 1975. How to know Western Australian wildflowers. Part 4. University Western Australian Press, Perth.

    Google Scholar 

  • — andE. O. Hellmuth. 1970. Eco-physiology of Western Australian plants. Oecol. Pl.5: 33–68.

    Google Scholar 

  • Grobbelaar, N. andB. Clarke. 1972. A qualitative study of the nodulating ability of legume species: List 2. J. South African Bot.35: 241–247.

    Google Scholar 

  • ——. 1974. A qualitative study of the nodulating ability of legume species: List 4. Agroplantae6: 57–64.

    Google Scholar 

  • ——. 1975. A qualitative study of the nodulating ability of legume species: List 3. J. South African Bot.41: 29–36.

    Google Scholar 

  • -J. M. Strauss and E. G. Groenewald. 1971. Non-leguminous seed plants in southern Africa which fix nitrogen symbiotically. Pl. &Soil Special Vol. 325–334.

  • -,M. E. van Beyma and C. M. Todd. 1967. A qualitative study of the nodulating ability of legume species: List 1. Publication of the University of Pretoria 38.

  • — andM. W. van Rooyen. 1979. A qualitative study of the nodulating ability of legume species: List 5. J. South African Bot.45: 267–272.

    Google Scholar 

  • Grove, T. S. andN. Malajczuk. 1980. Nitrogen inputs toEucalyptus marginata andE. diversicolor forests. Pages 1–7in Proceedings of workshop on nitrogen in natural forest ecosystems. CSIRO, Perth.

    Google Scholar 

  • —,A. M. O’Connell andN. Malajczuk. 1980. Effects of fire on the growth, nutrient content and rate of nitrogen fixation of the cycadMacrozamia riedlei. Austral. J. Bot.28: 271–281.

    Article  CAS  Google Scholar 

  • Grundon, N. J. 1972. Mineral nutrition of some Queensland heath plants. J. Ecol.60: 171–181.

    Article  CAS  Google Scholar 

  • Gillian, P. K. 1975. Vegetation at Cranbourne. Vol. 2. Ph.D. Thesis, Monash Univ., Victoria.

    Google Scholar 

  • Hadley, G. 1975. Organization and fine structure of orchid mycorrhiza. Pages 335–351in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • Hall, I. R. 1975. Endomycorrhizasof Metrosideros umbellata andWeinmannia racemosa. New Zealand J. Bot.13: 463–472.

    Google Scholar 

  • —. 1977. Species and mycorrhizal infections of New Zealand Endogonaceae. Trans. Brit. Mycol. Soc.68: 341–356.

    Google Scholar 

  • Halliday, J. andJ. S. Pate. 1976. Symbiotic nitrogen fixation by coralloid roots of theMacrozamia riedlei: Physiological characteristics and ecological significance. Austral. J. Plant Physiol.3: 349–358.

    CAS  Google Scholar 

  • Hansen, D. H. 1977. Physiology and microclimate in a hemi-parasiteCastilleja chromosa (Scrophulariaceae). Amer. J. Bot.66: 477–484.

    Article  Google Scholar 

  • Hardy, R. W., R. C. Burns andR. D. Holsten. 1973. Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem.5: 47–81.

    Article  CAS  Google Scholar 

  • Harley, J. L. 1969. The biology of mycorrhiza. Leonard Hill, London.

    Google Scholar 

  • —. 1975. Problems in mycotrophy. Pages 1–24in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • Härtel, O. 1937. Über den Wasserhaushelt vonViscum album L. Ber. Deutsch. Bot. Ges.55: 310–321.

    Google Scholar 

  • —. 1941. Über die Ökologie einiger Halbparasiten und ihrer Wirtspflanzen. Ber. Deutsch. Bot. Ges.59: 136–148.

    Google Scholar 

  • Harvey, W. H., O. W. Sonder, W. T. Thiselton-Dyer andA. W. Hill (eds.). 1859–1933. Flora Capensis. 7 vols. Reeve &Co., London.

    Google Scholar 

  • Hatch, A. B. 1977. Some effects of external factors on nutrient cycling in the jarrah forest ecosystem. Pages 105–111in Nutrient cycling in indigenous forest ecosystems. CSIRO, Div. Land Resources Management, Perth.

    Google Scholar 

  • Hattingh, M. J. 1972. A note on the fungusEndogone. J. South African Bot.38: 29–31.

    Google Scholar 

  • Hayman, D. S. 1974. Plant growth responses to vesicular-arbuscular mycorrhiza. New Phytol.73: 71–80.

    Article  Google Scholar 

  • Haxen, P. G. 1978. Aspects of nodule physiology of some southwestern Cape leguminous species. Hons. Thesis, Univ. Cape Town.

  • Head, G. C. 1964. A study of “exudation” from the root hairs of apple roots by timelapse cine-photomicrography. Ann. Bot.28: 495–498.

    Google Scholar 

  • Heddle, E. M. andR. L. Specht. 1975. Dark island heath (Ninety-mile Plain, South Australia). VIII. The effect of fertilisers on composition and growth, 1950–1972. Austral. J. Bot.23: 151–164.

    Article  Google Scholar 

  • Hellmuth, E. O. 1971. Eco-physiological studies on plants in arid and semi-arid regions in Western Australia IV. Comparison of the field physiology of the host,Acacia grasbyi and its hemiparasite,Amyema nestor under optimal and stress conditions. J. Ecol.59: 351–363.

    Article  Google Scholar 

  • Herbert, D. A. 1919.Nuytsiafloribunda (the Christmas tree)-Its structure and parsitism. J. Proc. Roy. Soc. Western Australia5: 72–88.

    Google Scholar 

  • —. 1925. The root parasitism of western Australian Santalaceae. J. Roy. Soc. Western Australia11: 127–149.

    Google Scholar 

  • Herrera, R., T. Mérida, N. Stark andC. F. Jordan. 1978. Direct phosphorus transfer from litter to roots. Naturwissenschaften65: 208–209.

    Article  CAS  Google Scholar 

  • Heslop-Harrison, Y. 1978. Carnivorous plants. Sci. Amer.238: 104–115.

    Article  Google Scholar 

  • Hewitt, E. J. andT. A. Smith. 1975. Plant mineral nutrition. English University Press, London.

    Google Scholar 

  • Hill, A. W. 1925. Santalaceae. Pages 135–213in W. T. Thiselton-Dyer (ed.). Flora Capensis. Vol. 5/2. Reeve &Co., London.

    Google Scholar 

  • Hingston, F. J. 1977. Sources of, and sinks for, nutrients in forest ecosystems. Pages 41–53in Nutrient cycling in indigenous forest ecosystems. CSIRO, Div. Land Resources Management. Perth.

    Google Scholar 

  • -,N. Malajczuk and T. S. Grove. In press. Acetylene reduction (N2-fixation) by jarrah forest legumes following fire and phosphate application. J. Appl. Ecol.

  • Hopper, S. D. 1979. Biogeographical aspects of speciation in the southwest Australian flora. Ann. Rev. Ecol. Syst.10: 397–422.

    Article  Google Scholar 

  • — andB. R. Maslin. 1978. Phytogeography ofAcacia in Western Australia. Austral. J. Bot.26: 63–78.

    Article  Google Scholar 

  • Horak, O. 1974. Comparative analyses of mineral ion content of some Loranthaceae and their hosts. Z. Pflanzenphysiol.73: 461–466.

    Google Scholar 

  • Hos, D. 1975. Preliminary investigation of the palynology of the Upper Eocene Werillup Formation, Western Australia. J. Roy. Soc. Western Australia58: 1–14.

    Google Scholar 

  • Hutchinson, J. 1917. XVI. Notes on African Compositae: IV.Matricaria. Kew Bull. Pp. 111–118.

  • Jackson, D. R., W. J. Selvidge andB. S. Ausmus. 1978. Behaviour of heavy metals in forced microcosms. I. Effects on nutrient cycling processes. Water Air Soil Poll.10: 13–18.

    CAS  Google Scholar 

  • Jackson, N. E., R. H. Miller andR. E. Franklin. 1973. The influence of vesicular-arbuscular mycorrhizae on uptake of90Sr from soil by soybeans. Soil Biol. Biochem.5: 205–212.

    Article  CAS  Google Scholar 

  • Janos, D. P. 1980. Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology61: 151–162.

    Article  Google Scholar 

  • Jeffrey, D. W. 1967. Phosphate nutrition of Australian heath plants. I. The importance of proteoid roots inBanksia (Proteaceae). Austral. J. Bot.15: 403–411.

    Article  CAS  Google Scholar 

  • Jessop, J. P. 1966. The genusAsparagus in Southern Africa. Bothalia9: 31–96.

    Google Scholar 

  • Johnson, L. A. andB. G. Briggs. 1975. On the Proteaceae—The evolution and classification of a southern family. J. Linn. Soc., Bot.70: 83–182.

    Google Scholar 

  • Johnson, P. N. 1973. Mycorrhizae of coniferous-broadleaved forest. Ph.D. Thesis, Otago Univ., New Zealand.

    Google Scholar 

  • Jones, F. R. 1924. A mycorrhizal fungus in the roots of legumes and some other plants. J. Agric. Res.29: 459–470.

    Google Scholar 

  • Jongens-Roberts, S. M., G. J. Brown andD. T. Mitchell. 1980. Studies on phosphorus cycling processes in the fynbos biome. CSIR, S. Africa. Fynbos Biome Ann. Rep. No. 2.

    Google Scholar 

  • Jooste, J. and L. Raitt. 1980. Na/K ratios and the Proteaceae. Report on seminar and discussion session on nutrient studies within the Fynbos Biome Project, CSIR, National Programme for Environmental Sciences. University of Cape Town.

  • Juniper, B. E., A. J. Gilchrist andA. J. Robins. 1977. Some features of secretory systems in plants. Histochem. J.9: 659–680.

    Article  PubMed  CAS  Google Scholar 

  • Kana, T. M. andJ. D. Tjepkema. 1978. Nitrogen fixation associated withScirpus atrovirens and other non-nodulated plants in Massachusetts. Canad. J. Bot.56: 2636–2640.

    CAS  Google Scholar 

  • Kepert, D. G., A. D. Robson andA. M. Posner. 1979. The effect of organic root products on the availability of phosphorus to plants. Pages 115–124in J. L. Harley and R. S. Russell (eds.). The soil-root interface. Academic Press, London.

    Google Scholar 

  • Khan, A. G. 1967.Podocarpus root nodules in sterile culture. Nature215: 1170.

    Article  Google Scholar 

  • —. 1978. Vesicular-arbuscular mycorrhizas in plants colonizing black wastes from bituminous coal mining in the Illawara region of New South Wales. New Phytol.81: 53–63.

    Article  Google Scholar 

  • Kies, P. 1951. Revision of the genusCyclopia and notes on some other sources of bush tea. Bothalia6: 161–173.

    Google Scholar 

  • Killick, D. J. 1969. The South African species ofMyrica. Bothalia10: 5–17.

    Google Scholar 

  • Kimber, P. C. 1974. The root system of jarrah (Eucalyptus marginata). Res. Paper No. 14. Forests Dept., Perth.

    Google Scholar 

  • Klaren, C. H. andG. Janssen. 1978. Physiological changes in the hemiparasiteRhinanthus serotinus before and after attachment. Physiol. Pl.42: 151–155.

    Article  CAS  Google Scholar 

  • — andS. J. van de Dijk. 1976. Water relations of the hemiparasiteRhinanthus serotinus before and after attachment. Physiol. Pl.38: 121–125.

    Article  Google Scholar 

  • Kruger, F. J. 1979. South African heathlands. Pages 19–80in R. L. Specht (ed.). Heathlands and associated shrublands. A descriptive study. Elsevier Sci. Pub., Amsterdam.

    Google Scholar 

  • Knuckelmann, H. W. 1975. Effect of fertilizers, soil tillage, and plant species on the frequency ofEndogone chlamydospores and mycorrhizal infection in arable soils. Pages 511–525in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • Kuijt, J. 1969. The biology of flowering parasitic plants. University California Press, Berkeley.

    Google Scholar 

  • Lamont, B. 1972a. The morphology and anatomy of proteoid roots in the genusHakea. Austral. J. Bot.20: 155–174.

    Article  Google Scholar 

  • —. 1972b. The effect of soil nutrients on the production of proteoid roots byHakea species. Austral. J. Bot.20: 27–40.

    Article  CAS  Google Scholar 

  • —. 1972c. “Proteoid” roots in the legumeViminaria juncea. Search3: 90–91.

    Google Scholar 

  • —. 1973. Factors affecting the distribution of proteoid roots within the root systems of twoHakea species. Austral. J. Bot.21: 165–187.

    Article  CAS  Google Scholar 

  • —. 1974. The biology of dauciform roots in the sedgeCyathochaete avenacea. New Phytol.73: 985–996.

    Article  Google Scholar 

  • —. 1976a. The effects of seasonality and waterlogging on the root systems of a numberof Hakea species. Austral. J. Bot.24: 691–702.

    Article  Google Scholar 

  • —. 1976b. A biological survey and recommendations for rehabilitating portion of Reserve 31030 to be mined for heavy minerals during 1975–81. WAIT-AID Ltd., Perth.

    Google Scholar 

  • —. 1977. Root parasitismof Hakea sulcata byNuytsia floribunda. Western Australian Nat.13: 201–202.

    Google Scholar 

  • —. 1979. The root systems of Myrtaceae. Austral. Pl.10: 74–78.

    Google Scholar 

  • -. 1980a. Proteoid roots in the South African Proteaceae. CSIR, S. Africa. Fynbos Biome Ann. Rep. 2 (Available from author.)

  • —. 1980b. Blue-green algae in nectar ofBanksia aff.sphaerocarpa. Western Australian Nat.14: 193–194.

    Google Scholar 

  • —. 1981a. Specialized roots of non-symbiotic origin in heathlands. Pages 183–195in R. L. Specht (ed.). Heathlands and related shrublands of the world. B. Analytical Studies. Elsevier Sci. Pub., Amsterdam.

    Google Scholar 

  • —. 1981b. A botanist in South Africa, 1980. Study Leave Report. School of Biology, WAIT, Bentley (available from author).

    Google Scholar 

  • —. 1981c. Morphometrics of the aerial roots ofKingia australis (Liliales). Austral. J. Bot.29: 81–96.

    Article  Google Scholar 

  • —. 1981d. Autografting of roots and stems inEucalyptus and of rhizomes inNuytsia floribunda. Western Australian Nat.15: 26–28.

    Google Scholar 

  • —. 1981e. Availability of water and inorganic nutrients in the persistent leaf bases of the grasstreeKingia australis and the uptake and translocation of labelled phosphate by the embedded aerial roots. Physiol. Pl.52: 181–186.

    Article  CAS  Google Scholar 

  • —. 1981f. Understorey suppression byEucalyptus wandoo. Page 4in Conf. on biology of eucalyptus. Austral. Syst. Bot. Soc., King’s Park and Botanic Garden, Perth (abstract).

    Google Scholar 

  • —. 1982a. The reproductive biology ofGrevillea leucopteris (Proteaceae), including reference to its glandular hairs and colonizing potential. Flora172: 1–20.

    Google Scholar 

  • —. 1982b. Host specificity and germination requirements of some South African mistletoes. South African J. Sci.78: 41–42.

    Google Scholar 

  • -. In press. Mineral nutrition of mistletoes.In D. M. Calder and P. Bernhart (eds.). The biology of mistletoes. Academic Press, London.

  • —,S. Downes andJ. E. Fox. 1977. Importance-value curves and diversity indices applied to a species-rich heathland in Western Australia. Nature265: 438–441.

    Article  Google Scholar 

  • — andB. J. Lange. 1976. “Stalagmiform” roots in limestone caves. New Phytol.76: 353–360.

    Article  Google Scholar 

  • — andA. J. McComb. 1974. Soil micro-organisms and the formation of proteoid roots. Austral. J. Bot.22: 681–688.

    Article  Google Scholar 

  • — andM. Perry. 1977. The effects of light, osmotic potential and atmospheric gases on germination of the mistletoeAmyema preissii. Ann. Bot.41: 203–209.

    Google Scholar 

  • — andR. A. Ryan. 1977. Formation of coralloid roots by cycads under sterile conditions. Phytomorphology27: 426–429.

    Google Scholar 

  • — andK. J. Southall. 1982a. Biology of the mistletoeAmyema preissii on road verges and undisturbed vegetation. Search13: 87–88.

    Google Scholar 

  • ——. 1982b. Distribution of mineral nutrients between the mistletoeAmyema preissii and its hostAcacia acuminata. Ann. Bot.49: 721–725.

    Google Scholar 

  • Lange, R. T. 1959. Additions to the known nodulating species of Leguminosae. Antoni van Leeuevenhoek J. Ned. Tijdschr. Hug.25: 272–276.

    Article  Google Scholar 

  • —. 1961. Nodule bacteria associated with the indigenous Leguminosae of southwestern Australia. J. Gen. Microbiol.61: 351–359.

    Google Scholar 

  • —. 1978. Some Eocene leaf fragments comparable to Proteaceae. J. Roy. Soc. Western Australia60: 107–114.

    Google Scholar 

  • —. 1980. Evidence of lid-cells and host-specific micro-fungi in the search for TertiaryEucalyptus. Rev. Palaeobot. Palyn.29: 29–33.

    Article  Google Scholar 

  • Lau, N. S. 1968. Root anatomy ofBanksia spp.,Casuarina glauca and some members of Myrtaceae grown under controlled water conditions. Hons. Thesis, University of Sydney, New South Wales.

    Google Scholar 

  • Lawrie, A. C. 1981. Nitrogen fixation by native Australian legumes. Austral. J. Bot.29: 143–157.

    Article  CAS  Google Scholar 

  • Lee, H. M. 1978. Studies of the family Proteaceae II. Further observations on the root morphology of some Australian genera. Proc. Roy. Soc. Vic.90: 251–256.

    Google Scholar 

  • Levyns, M. 1935. Veld burning experiments at Oakdale, Riversdale. Trans. Roy. Soc. South Africa23: 231–243.

    Google Scholar 

  • —. 1937. A revision ofStoebe L. J. South African Bot.3: 1–35.

    Google Scholar 

  • —. 1970. A revision of the genusParanomus (Proteaceae). Contr. Bolus Herb.2: 3–48.

    Google Scholar 

  • Lewis, O. A. andW. D. Stock. 1978. A preliminary study of the nitrogen nutritional status of members of the South African Proteaceae. J. South African Bot.44: 143–151.

    Google Scholar 

  • Lie, T. A. and E. G. Mulder (eds.). 1971. Biological nitrogen fixation in natural and agricultural habitats. Pl. &Soil Special Vol.

  • Ling-Lee, M., A. E. Ashford andG. A. Chilvers. 1977. A histochemical study of polysaccharide distribution in eucalypt mycorrhizas. New Phytol.78: 329–335.

    Article  CAS  Google Scholar 

  • —,G. A. Chilvers andA. E. Ashford. 1975. Poly-phosphate granules in three different kinds of tree mycorrhiza. New Phytol.75: 551–554.

    Article  Google Scholar 

  • Lloyd, F. E. 1942. The carnivorous plants. Chronica Botanica Co., Waltham, Massachusetts.

    Google Scholar 

  • Loneragan, J. F. 1972. The soil chemical environment in relation to symbiotic nitrogen fixation. Pages 17–54in Use of isotopes for study of fertilizer utilization by legume crops. Pub. 149. Internat. Atomic Energy Comm., Vienna.

    Google Scholar 

  • Low, A. B. 1979. Phytomass and litter studies on the Cape Flats. CSIR, S. Africa. Fynbos Biome Rep. No. 1.

    Google Scholar 

  • —. 1980. Preliminary observations on specialized root morphologies in plants of the western Cape Province. South African J. Sci.76: 513–516.

    Google Scholar 

  • Lundeberg, G. 1970. Utilization of various nitrogen sources, in particular bound soil nitrogen, by mycorrhizal fungi. Stud. Forest. Suec. 79.

  • Lüttge, U. 1971. Structure and function of plant glands. Ann. Rev. Pl. Physiol.22: 23–44.

    Article  Google Scholar 

  • Main, A. R. 1979. The fauna. Pages 77–99in B. J. O’Brien (ed.). Environment and science. University of Western Australia Press, Perth.

    Google Scholar 

  • —. 1981. Ecosystem theory and management. J. Roy. Soc. Western Australia64: 1–4.

    Google Scholar 

  • Malajczuk, N. andG. D. Bowen. 1974. Proteoid roots are microbially induced. Nature251: 316–317.

    Article  CAS  Google Scholar 

  • — andT. Grove. 1977. Legume understorey biomass, nutrient content and nitrogen fixation in eucalypt forests of southwestern Australia. Pages 36–39in Nutrient cycling in indigenous forest ecosystems. CSIRO, Div. Land Resources Management, Perth.

    Google Scholar 

  • — andF. J. Hingston. 1981. Ectomycorrhizae associated with Jarrah. Austral. J. Bot.29: 453–462.

    Article  Google Scholar 

  • — andB. B. Lamont. 1981. Specialized roots of symbiotic origin in heathlands. Pages 165–182in R. L. Specht (ed.). Heathlands and related shrublands of the world. B. Analytical studies. Elsevier Sci. Pub., Amsterdam.

    Google Scholar 

  • —,A. J. McComb andJ. F. Loneragan. 1975. Phosphorus uptake and growth of mycorrhizal and uninfected seedlings ofEucalyptus calophylla R. Br. Austral. J. Bot.23: 231–238.

    Article  Google Scholar 

  • Malloch, D. W., K. A. Pirozynski andP. H. Raven. 1980. Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proc. Natl. Acad. U.S.A.77: 2113–2118.

    Article  CAS  Google Scholar 

  • Marais, W. 1970. Cruciferae. Pages 1–117in L. E. Codd, B. De Winter, D. J. Killick and H. B. Rycroft (eds.). Flora of southern Africa. Dept. Agri. Tech. Serv. Pretoria.

    Google Scholar 

  • Marloth, R. 1913, 1925. The flora of South Africa. Vol. 1, 2/1 Darter Bros &Co., Cape Town.

    Google Scholar 

  • Marsh, J. A. 1966. Cupressaceae. Pages 43–48in L. E. Codd, B. De Winter and H. B. Rycroft (eds.). Flora of southern Africa 1. Dept. Agri. Tech. Services, Pretoria.

    Google Scholar 

  • Martin, H. A. 1978. Evolution of the Australian flora and vegetation through the Tertiary: Evidence from pollen. Alcheringa2: 181–202.

    Google Scholar 

  • Martin, P. G. 1979. First approaches to the study of the Australian flora using protein sequencing. Page 14in Symposium on the biology of native Australian plants. University of Western Australia, Perth (abstract).

    Google Scholar 

  • Marx, D. H. andW. C. Bryan. 1971. Influence of ectomycorrhizae on survival and growth of aseptic seedlings of loblolly pine at high temperature. Forest Sci.17: 37–41.

    Google Scholar 

  • McLuckie, J. 1924. Studies in parasitism. I. A contribution to the physiology of the genusCassytha. Proc. Linn. Soc. New South Wales49: 55–78.

    Google Scholar 

  • Mejstrik, V. K. 1972. Vesicular-arbuscular mycorrhizas of the species of a molinietum coeruleae L. I. Association: The ecology. New Phytol.71: 883–890.

    Article  Google Scholar 

  • Menge, J. A., D. Steirle, D. J. Bagyaraj, E. L. Johnson andR. T. Leonard. 1978. Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol.80: 575–578.

    Article  CAS  Google Scholar 

  • Menzies, B. P. 1954. Seedling development and haustorial system ofLoranthus micranthus Hook. F. Phytomorphology4: 397–409.

    Google Scholar 

  • Meredith, D. (ed.). 1955. The grasses and pastures of South Africa. Central News Agency, Cape Town.

    Google Scholar 

  • Milewski, A. V. 1981. A comparison of vegetation height in relation to the effectiveness of rainfall in the mediterranean and adjacent arid parts of Australia and South Africa. J. Biogeog.8: 107–116.

    Article  Google Scholar 

  • Mitchell D. T. andD. J. Read. 1980. Utilization of inorganic and organic phosphates by the mycorrhizal endophytes ofVaccinium macrocarpon andRhododendron ponticum. Trans. Brit. Mycol. Soc.76: 255–260.

    Google Scholar 

  • Moore, C. W. andK. Keraitis. 1971. Effect of nitrogen source on growth of eucalypts in sand culture. Austral. J. Bot.19: 125–141.

    Article  Google Scholar 

  • Monk, D., J. S. Pate andW. A. Loneragan. 1981. Biology ofAcacia pulchella R. Br. with special reference to nitrogen fixation. Austral. J. Bot.29: 579–592.

    Article  CAS  Google Scholar 

  • Morrison, T. M. 1956. Mycorrhiza of silver beech. New Zealand J. Forest.7: 47–60.

    Google Scholar 

  • Moss, C. E. andR. S. Adamson. 1954. The species ofArthrocnemum andSalicornia in Southern Africa. J. South African Bot.20: 1–22.

    Google Scholar 

  • —. 1975. Specificity in VA mycorrhizas. Pages 469–484in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • —,C. L. Powell andD. S. Hayman. 1976. Plant growth responses to vesiculararbuscular mycorrhiza. IX. Interactions between VA mycorrhiza, rock phosphate and symbiotic nitrogen fixation. New Phytol.76: 331–342.

    Article  Google Scholar 

  • Muir, B. G. 1977. Biological survey of the western Australian wheatbelt. Part 2: Vegetation and habitat of Bendering Reserve. Records Western Australian Mus. Suppl. No. 3.

  • Mullette, J. J., N. J. Hannon andA. G. Elliot. 1974. Insoluble phosphorus usage byEucalyptus. Pl. &Soil41: 199–205.

    Article  CAS  Google Scholar 

  • Munteanu-Deliu, C. 1974. Unele aspecte ale nutritiei minerale la plantele semi-paraziti. Continutul in compusi fosforici. Stud. Univ. Babes-Bolyai.1: 59–65.

    Google Scholar 

  • Murdoch, C. K., J. A. Jacobs andJ. W. Gerdemann. 1967. Utilization of phosphorus sources of different availability by mycorrhizal and non-mycorrhizal maize. Pl. &Soil27: 329–334.

    Article  Google Scholar 

  • Nakos, G. 1977. Acetylene reduction (N2-fixation) by nodules ofAcacia cyanophylla. Soil Biol. Biochem.9: 131–133.

    Article  CAS  Google Scholar 

  • Nambiar, E. K. 1976. Uptake of Zn65 from dry soil by plants. Pl. &Soil44: 267–271.

    Article  CAS  Google Scholar 

  • —. 1977. The effects of drying of the topsoil and of micro-nutrients in the subsoil on micro-nutrient uptake by an intermittently defoliated ryegrass. Pl. &Soil46: 185–193.

    Article  CAS  Google Scholar 

  • Nathanielsz, C. P. andI. A. Staff. 1975. A mode of entry of blue-green algae into the apogeotropic roots ofMacrozamia communis. Amer. J. Bot.62: 232–235.

    Article  Google Scholar 

  • Nelson, E. C. 1978. A taxonomic revision of the genusAdenanthos (Proteaceae). Brunonia1: 303–405.

    Article  Google Scholar 

  • Nicolson, T. H. 1960. Mycorrhiza in the Gramineae. II. Development in different habitats, particularly sand dunes. Trans. Brit. Mycol. Soc.43: 132–145.

    Google Scholar 

  • —. 1975. Evolution of vesicular-arbuscular mycorrhizas. Pages 25–34in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • Nicoloff, T. 1923. Contribution à la physiologie de la nutrition des parasites végéteaux supérieurs. Rev. Gen. Bot.35: 545–552.

    Google Scholar 

  • Nieuwdorp, P. J. 1972. Some observations with light and electron microscope on the endotrophic mycorrhiza of orchids. Acta Bot. Neerl.21: 128–144.

    Google Scholar 

  • Nordin, A. 1977. Effects of low root temperature on ion uptake and ion translocation in wheat. Physiol. Pl.39: 305–310.

    Article  CAS  Google Scholar 

  • Nutman, P. S. (ed.). 1976. Symbiotic nitrogen fixation in plants. Cambridge University Press, Cambridge.

    Google Scholar 

  • Nye, P. H. 1979. Soil properties controlling the supply of nutrients to the root surface. Pages 39–49in J. L. Harley and R. S. Russell (eds.). The soil-root interface. Academic Press, London.

    Google Scholar 

  • Obermeyer, A. A. 1970. Droseraceae, Roridulaceae. Pages 187–204in L. E. Codd, B. De Winter, D. J. Killick and H. B. Rycroft (eds.). Flora of southern Africa. 13. Dept. Agri. Tech. Services, Pretoria.

    Google Scholar 

  • Okahara, K. 1933. Physiological studies onDrosera, IV. On the function of micro-organisms in the digestion of insect bodies by insectivorous plants. Sci. Rep. Tohoku Imp. Univ., Ser. 4, Biol.8: 151–168.

    Google Scholar 

  • Okonkwo, S. N. andF. I. Nwoke. 1978. Initiation, development and structure of the primary haustorium inStriga gesnerioides (Scrophulariaceae). Ann. Bot.42: 455–463.

    Google Scholar 

  • O’Neill, R. V., B. M. Ross-Todd andF. G. O’Neill. 1980. Synthesis of terrestrial microcosm studies. Pages 239–257in W. F. Harris (ed.). Microcosms as potential screening tools for evaluating transport and effects of toxic substances. Final Rep. ORNL/TM-7028. Oakridge Nat. Lab., Tennessee.

    Google Scholar 

  • Owusu-Bennoah, E. andA. Wild. 1979. Autoradiography of the depletion zone of phosphate around onion roots in the presence of vesicular-arbuscular mycorrhiza. New Phytol.82: 133–140.

    Article  CAS  Google Scholar 

  • ——. 1980. Effects of vesicular-arbuscular mycorrhiza on the size of the labile pool of soil phosphate. Pl. &Soil54: 233–242.

    Article  CAS  Google Scholar 

  • Pairunan, A. K., A. D. Robson andL. K. Abbott. 1980. The effectiveness of vesiculararbuscular mycorrhizas in increasing growth and phosphorus uptake of subterranean clover from phosphorus sources of different solubilities. New Phytol.84: 327–338.

    Article  CAS  Google Scholar 

  • Parkes, D. 1973. Adaptive mechanisms in the carnivorous habit of pitcher plants. Hons. Thesis, Monash University, Victoria.

    Google Scholar 

  • Pate, J. S. andK. W. Dixon. 1978. Mineral nutrition ofDrosera erythrorhiza Lindl. with special reference to its tuberous habit. Austral. J. Bot.26: 455–464.

    Article  CAS  Google Scholar 

  • Pathmaranee, N. 1974. Observations on proteoid roots. M.Sc. Thesis, University of Sydney, N.S.W.

    Google Scholar 

  • Pearson, V. andD. J. Read. 1973a. The physiology of the mycorrhizal endophyte ofCalluna vulgaris. Trans. Brit. Mycol. Soc.64: 1–7.

    Google Scholar 

  • ——. 1973b. The biology of mycorrhiza in the Ericaceae. II. The transport of carbon and phosphorus by the endophyte and the mycorrhiza. New Phytol.72: 1325–1331.

    Article  CAS  Google Scholar 

  • Pillans, N. S. 1942. The genusPhylica. Linn. J. South African Bot.8: 1–164.

    Google Scholar 

  • —. 1947. A revision of Bruniaceae. J. South African Bot.13: 121–206.

    Google Scholar 

  • Pirozynski, K. A. andO. W. Malloch. 1975. The origin of land plants: A matter of mycotrophism. Bio Systems6: 153–164.

    PubMed  CAS  Google Scholar 

  • Pittman, H. A. 1929. Note on the morphology and endotrophic mycorrhiza ofRhizanthella gardneri Rogers, and certain other Western Australian orchids. J. Roy. Soc. Western Australia15: 71–79.

    Google Scholar 

  • Powell, C. L. 1975. Rushes and sedges are non-mycotrophic. Pl. &Soil42: 481–484.

    Article  Google Scholar 

  • —. 1976. Development of mycorrhizal infections fromEndogone spores and infected root segments. Trans. Brit. Mycol. Soc.66: 439–445.

    Article  Google Scholar 

  • —. 1977. Effect of phosphate fertilizer and plant density on phosphate inflow into ryegrass roots in soil. Pl. &Soil47: 383–393.

    Article  Google Scholar 

  • Pringsheim, E. G. andO. Pringsheim. 1962. Axenic culture ofUtricularia. Amer. J. Bot.49: 898–901.

    Article  Google Scholar 

  • Puff, C. B. 1978. The genusGalium L. (Rubiaceae) in Southern Africa. J. South African Bot.44: 203–279.

    Google Scholar 

  • Purnell, H. M. 1960. Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Austral. J. Bot.8: 38–50.

    Article  Google Scholar 

  • Purves, S. andG. Hadley. 1975. Movement of carbon compounds between the partners in orchid mycorrhiza. Pages 175–194in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • Read, D. J., H. K. Koucheki andJ. Hodgson. 1976. Vesicular-arbuscular mycorrhiza in natural vetetation systems. I. The occurrence of infection. New Phytol.77: 641–653.

    Article  Google Scholar 

  • — andD. P. Stribley. 1973. Effect of mycorrhizal infection on nitrogen and phosphorus nutrition of ericaceous plants. Nature (New Biol.)244: 81–82.

    CAS  Google Scholar 

  • Reid, C. P. andG. D. Bowen. 1979. Effects of soil moisture on VA mycorrhiza formation and root development inMedicago. Pages 211–219in J. L. Harley and R. S. Russell (eds.). The soil-root interface. Academic Press, London.

    Google Scholar 

  • Renaudin, S. 1975. Mise en évidence d’activités enzymatiques au niveau des sucoirs deLathraea clandestina L. Bull. Soc. Bot. France124: 419–425.

    Google Scholar 

  • Renbuss, M. A., G. A. Chilvers andL. D. Pryor. 1972. Microbiology of an ashbed. Proc. Linn. Soc. New South Wales97: 302–316.

    Google Scholar 

  • Rice, E. L. 1971. Inhibition of nodulation of inoculated legumes by leaf leachates from pioneer plant species from abandoned fields. Amer. J. Bot.58: 368–371.

    Article  Google Scholar 

  • Riley, D. andS. A. Barber. 1971. Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Soil Sci. Soc. Amer. Proc.35: 301–306.

    Article  CAS  Google Scholar 

  • Riopel, J. L. andL. J. Musselman. 1979. Experimental initiation of haustoria inAgalinis purpurea (Scrophulariaceae). Amer. J. Bot.66: 570–575.

    Article  Google Scholar 

  • Robinson, R. K. 1973. Mycorrhiza in certain Ericaceae native to Southern Africa. J. South African Bot.39: 123–129.

    Google Scholar 

  • Robson, A. D., G. W. O’Hara andL. K. Abbott. 1981. Involvement of phosphorus in nitrogen fixation by subterranean clover (Trifolium subterraneum L.). Austral. J. Plant Physiol.8: 427–436.

    CAS  Google Scholar 

  • Rodríguez-Barrueco, C., A. H. Mackintosh andG. Bond. 1970. Some effects of combined nitrogen on the nodule symbioses ofCasuarina andAeanothus. Pl. &Soil33: 129–139.

    Article  Google Scholar 

  • Ross, J. P. andJ. A. Harper. 1973. Hosts of a vesicular-arbuscularEndogone species. J. Elisha Mitchell Sci. Soc.89: 1–3.

    Google Scholar 

  • Rourke, J. P. 1969. Taxonomic studies onSorocephalus andSpatalla Salisb. J. South African Bot. (Suppl.)7: 1–124.

    Google Scholar 

  • —. 1972. Taxonomic studies onLeucospermum. J. South African Bot. (Suppl.)8: 1–194.

    Google Scholar 

  • —. 1975. Proteaceae. Pages 40–47in R. A. Dyer (ed.). The genera of South African flowering plants 1. Dept. Agri. Tech. Services, Pretoria, South Africa.

    Google Scholar 

  • —. 1980. The proteas of southern Africa. Purnell, Cape Town.

    Google Scholar 

  • Rowell, D. L., M. W. Martin andP. H. Nye. 1967. The measurement and mechanism of ion diffusion in soils. III. The effect of moisture content and soil solution concentration on the self-diffusion of ions in soils. J. Soil Sci.18: 204–222.

    Article  CAS  Google Scholar 

  • Safir, G. R., J. S. Boyer andJ. W. Gerdemann. 1972. Nutrient status and mycorrhizal enhancement of water transport in soybean. Pl. Physiol.49: 700–703.

    Article  CAS  Google Scholar 

  • Salter, T. M. 1944. The genusOxalis in South Africa. J. South African Bot. (Suppl.)1: 1–355.

    Google Scholar 

  • Sanders, F. E. andP. B. Tinker. 1973. Phosphate flow into mycorrhizal roots. Pesticide Sci.4: 385–395.

    Article  CAS  Google Scholar 

  • Schalke, J. H. 1973. The upper Quaternary of the Cape Flats area (Cape Province, South Africa). Scrip. Geol.15: 1–57.

    Google Scholar 

  • Schnepf, E. 1974. Gland cells. Pages 331–359in A. W. Robards (ed.). Dynamic aspects of plant ultrastructure. McGraw Hill, London.

    Google Scholar 

  • Schulze, R. E. andO. S. McGee. 1978. Climatic indices and classifications in relation to the biogeography of southern Africa. Pages 19–52in M. J. Werger (ed.). Biogeography and ecology of Southern Africa. W. Junk, The Hague.

    Google Scholar 

  • Seddon, G. 1972. Sense of place. Western Australian University Press, Perth.

    Google Scholar 

  • Shea, S. R. andB. Dell. 1981. Structure of the surface root system ofEucalyptus marginata Sm, and its infection byPhytophthora cinnamomi Rands. Austral. J. Bot.29: 49–58.

    Article  Google Scholar 

  • -and R. J. Kitt. 1976. The capacity of Jarrah forest native legumes to fix nitrogen. Forests Dept. West. Austr. Res. Paper 21.

  • Siddiqi, M. Y. andR. C. Carolin. 1976. Studies on the ecology of coastal heath in New South Wales. II. The effects of water supply and phosphorus uptake on the growth ofBanksia serratifolia, B. aspleniifolia andB. ericifolia. Proc. Linn. Soc. New South Wales101: 38–52.

    Google Scholar 

  • Skinner, M. F. andG. D. Bowen. 1974. The uptake and translocation of phosphate by mycelial strands of pine mycorrhizas. Soil Biol. Biochem.6: 53–56.

    Article  CAS  Google Scholar 

  • Small, E. 1973. Xeromorphy in plants as a genetic basis for migration between arid and nutrient deficient environments. Bot. Not.126: 534–539.

    Google Scholar 

  • Small, J. G., A. Onraet, O. S. Grierson andG. Reynolds. 1977. Studies on insect-free growth, development and nitrate-assimilating enzymes ofDroseraaliciae Hamet. New Phytol.79: 127–133.

    Article  CAS  Google Scholar 

  • Smith, S. E. 1966. Physiology and ecology ofOrchis mycorrhizal fungi with reference to seedling nutrition. New Phytol.65: 488–499.

    Article  Google Scholar 

  • Snowball, K., A. D. Robson andJ. F. Loneragan. 1980. The effect of copper on nitrogen fixation in subterranean clover (Trifolium subterraneum). New Phytol.85: 63–72.

    Article  CAS  Google Scholar 

  • So, H. B. 1979. Water potential gradients and resistances of a soil-root system measured with the root and soil psychrometer. Pages 99–113in J. L. Harley and R. S. Russell (eds.). The soil-root interface. Academic Press, London.

    Google Scholar 

  • Sorensen, D. andW. T. Jackson. 1968. Utilization ofParamecium byUtricularia gibba. Planta83: 166–170.

    Article  Google Scholar 

  • Specht, R. L. 1979. Heathlands and related shrublands of the world. Pages 1–19in R. L. Specht (ed.). Heathlands and related shrublands of the world. A. Descriptive studies. Elsevier, Amsterdam.

    Google Scholar 

  • —. 1981. Nutrient release from decomposing leaf litter ofBanksiaornata, Dark Island Heathland, South Australia. Austral. J. Ecol.6: 59–63.

    Article  Google Scholar 

  • — andR. H. Groves. 1966. Comparison of the phosphate nutrition of Australian heath plants and introduced economic plants. Austral. J. Bot.14: 201–221.

    Article  Google Scholar 

  • — andP. Rayson. 1957. Dark Island Heath (Ninety-Mile Plain, South Australia). III. The root systems. Austral. J. Bot.5: 103–114.

    Article  Google Scholar 

  • Speck, N. J. 1953. Atmospheric pollen in the city of Perth and environs. J. Roy. Soc. Western Australia37: 119–125.

    Google Scholar 

  • Sperber, J. I. 1958. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Austral. J. Agric. Res.9: 282–287.

    Google Scholar 

  • Sporne, K. R. 1980. A reinvestigation of character correlations among dicotyledons. New Phytol.85: 419–449.

    Article  Google Scholar 

  • Sprent, J. I. 1972. The effects of water stress on nitrogen-fixing root nodules. IV. Effects on whole plants ofVicia faba andGlycine max. New Phytol.71: 603–611.

    Article  Google Scholar 

  • Stewart, W. D. 1963. The effect of combined nitrogen on growth and nodule development ofMyrica andCasuarina. Z. Allg. Mikrobiol.3: 152–156.

    Article  Google Scholar 

  • Stock, W. and O. A. Lewis. 1980. An investigation on cycling and processing of nitrogen in the fynbos biome. CSIR, Fynbos Biome Ann. Rep. No. 2.

  • Straker, C. J. andD. T. Mitchell. 1980. Phosphatase activity and polyphosphate accumulation in ericoid mycorrhizas. Fourth international conference of mediterranean ecosystems. University of Stellenbosch, South Africa (abstract).

    Google Scholar 

  • Stribley, D. P. andD. J. Read. 1974a. The biology of mycorrhiza in the Ericaceae. IV. The effect of mycorrhizal infection on uptake of15N from labelled soil byVaccinium macrocarpon Ait. New Phytol.73: 1149–1155.

    Article  Google Scholar 

  • ——. 1974b. The biology of mycorrhiza in the Ericaceae. III. Movement of carbon-14 from host to fungus. New Phytol.73: 731–741.

    Article  CAS  Google Scholar 

  • ——. 1975. Some nutritional aspects of the biology of ericaceous mycorrhizas. Pages 195–208in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • ——. 1976. The biology of mycorrhiza in the Ericaceae. VI. The effects of mycorrhizal infection and concentration of ammonium nitrogen on growth of cranberry (Vaccinium macrocarpon Ait.) in sand culture. New Phytol.77: 63–72.

    Article  CAS  Google Scholar 

  • Strzemska, J. 1975. Occurrence and intensity of mycorrhiza and deformation of roots without mycorrhiza in cultivated plants. Pages 537–543in F. E. Sanders, B. Mosse and P. E. Tinker (eds.). Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • Sward, R. J. 1978a. Studies on vesicular-arbuscular mycorrhizas of some Australian heathland plants. Ph.D. Thesis, Monash University, Victoria, Aust.

    Google Scholar 

  • —. 1978b. Infection of Australian heathland plants byGigaspora margarita (a vesicular-arbuscular mycorrhizal fungus). Austral. J. Bot.26: 253–264.

    Article  Google Scholar 

  • Sydenham, P. H. andF. P. Findlay. 1973. The rapid movement of the bladder ofUtricularia sp. Austral. J. Biol. Sci.26: 1115–1126.

    Google Scholar 

  • Tacey, W. H. 1977. Nitrogen fixation rate ofAlbizia lophantha. Pages 59–63in Nutrient cycling in indigenous forest ecosystems. CSIRO, Div. Land Resources Management, Perth.

    Google Scholar 

  • Taylor, H. C. 1961. Ecological account of a remnant coastal forest near Stanford, Cape Province. J. South African Bot.27: 153–165.

    Google Scholar 

  • Taylor, P. 1964. The genusUtricularia L. in Africa (south of the Sahara) and Madagascar. Kew Bull.18: 1–245.

    Article  Google Scholar 

  • Thiergart, F., F. Franz andK. Baukopf. 1963. Palynologische Untersuchungen von Tertiärkohlen und einer Oberflächenprobe nahe Knysna, Südafrika. Advancing Frontiers Pl. Sci.4: 151–178.

    Google Scholar 

  • Titze, J. F., G. Craig andB. B. Lamont. 1980. Vesicular-arbuscular mycorrhizae in jarrah forest—A preliminary note. Mulga Res. Centre Ann. Rep.3: 29–33.

    Google Scholar 

  • Torrey, J. G. 1976. Initiation and development of root nodules ofCasuarina (Casuarinaceae). Amer. J. Bot.63: 335–344.

    Article  Google Scholar 

  • Trappe, J. 1962. Fungus associates of ectotrophic mycorrhizae. Bot. Rev.28: 538–606.

    Google Scholar 

  • Trinick, M. J. 1977. Vesicular-arbuscular infection and soil phosphorus utilizat: inLupinus spp. New Phytol.78: 297–304.

    Article  CAS  Google Scholar 

  • Tsivion, Y. 1978. Loading of assimilates and some sugars into the translocation system ofCuscuta. Austral. J. Pl. Physiol.5: 851–857.

    Article  CAS  Google Scholar 

  • Tyson, J. H. andW. S. Silver. 1979. Relationship of ultrastructure of acetylene reduction (N2 fixation) in root nodules ofCasuarina. Bot. Gaz.140 (Suppl.): 44–48.

    Article  CAS  Google Scholar 

  • UNESCO-FAO. 1963. Ecological study of the mediterranean zone. Bioclimatic map of the mediterranean zones: Explanatory notes. Arid Zone Res.21: 1–26.

    Google Scholar 

  • van Daalen, J. C. 1980. The colonisation of fynbos and disturbed sites by indigenous forest communities in the Southern Cape. M.Sc. Thesis, University of Cape Town, South Africa.

    Google Scholar 

  • van Voris, P., R. V. O’Neill, W. R. Emanual andH. H. Shugart. 1980. Functional complexity and ecosystem stability. Ecology61: 1352–1360.

    Article  Google Scholar 

  • van Zinderen Bakker, E. M. 1976. The evolution of late Quaternary palaeoclimates of southern Africa. Pages 160–202in van Zinderen Bakker (ed.). Palaeoecology of Africa, the surrounding islands and Antarctica. IX. Balkema, Cape Town.

    Google Scholar 

  • Walker, D. andG. Singh. 1981. Vegetation history. Pages 26–43in R. H. Groves (ed.). Australian vegetation. Cambridge Univeristy Press, Cambridge.

    Google Scholar 

  • von Breitenbach, F. 1974. Southern Cape forests and trees. Govt. Printer, Pretoria.

    Google Scholar 

  • Walters, C. M. andJ. H. Jooste. 1980. Aspekte van di minerale voeding van lede van die Proteaceae as verteenwoordigers van die fynbosgemeenskap. CSIR, S. Africa. Fynbos Biome Ann. Rep. No. 2.

    Google Scholar 

  • Warcup, J. H. 1975. A culturableEndogone associated with eucalypts. Pages 53–63in F. E. Sanders, B. Mosse and P. B. Tinker (eds.). Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • — andP. H. Talbot. 1971. Perfect states of rhizoctonias associated with orchids. II. New Phytol.70: 35–40.

    Article  Google Scholar 

  • Weatherley, P. E. 1979. The hydraulic resistance of the soil-root interface—A cause of water stress in plants. Pages 275–286in J. L. Harley and R. S. Russell (eds.). The soilroot interface. Academic Press, London.

    Google Scholar 

  • Webb, L. J. 1954. Aluminium accumulation in the Australian-New Guinea flora. Austral. J. Bot.2: 176–196.

    Article  CAS  Google Scholar 

  • Weber, H. C. 1980. Untersuchungen an australischen und neuseelandischen Loranthaceae/Viscaceae 1. Zur Morphologie und Anatomie der unterirdischen Organe vonNuytsia floribunda (Labill.) R. Br. Beitr. Biol. Pflanzen.55: 77–99.

    Google Scholar 

  • Weijman, A. C. andH. L. Meuzelaar. 1979. Biochemical contributions to the taxonomic status of the Endogonaceae. Canad. J. Bot.57: 284–291.

    Article  CAS  Google Scholar 

  • Weimark, H. 1948. The genusCliffortia: A taxonomical survey. Bot. Not.90: 167–203.

    Google Scholar 

  • Werger, M. J. (ed.). 1978. Biogeography and ecology of southern Africa. W. Junk, The Hague.

    Google Scholar 

  • Westman, W. 1978. Evidence for the distinct evolutionary histories of canopy and understorey in theEucalyptus forest-heath alliance of Australia. J. Biogeog.5: 365–376.

    Article  Google Scholar 

  • White, F. 1978. The afromontane region. Pages 463–513in M. J. Werger (ed.). Biogeography and ecology of southern Africa. W. Junk, The Hague.

    Google Scholar 

  • White, J. A. andM. F. Brown. 1979. Ultrastructure and X-ray analysis of phosphorus granules in a vesicular-arbuscular mycorrhizal fungus. Canad. J. Bot.57: 2812–2818.

    Article  CAS  Google Scholar 

  • Whitney, P. J. 1972. The carbohydrate and water balance of beans (Vicia faba) attacked by broomrape (Orobanche crenata). Ann. Appl. Biol.70: 59–66.

    Article  Google Scholar 

  • Wiens, D. andH. R. Tolken. 1979. Loranthaceae, Viscaceae. Pages 1–59in O. A. Leistner (ed.). Flora of southern Africa. Vol. 10. Dept. Agri. Tech. Serv., Pretoria, South Africa.

    Google Scholar 

  • Wild, A. 1958. The phosphate content of Australian soils. Austral. J. Agric. Res.9: 193–204.

    Article  CAS  Google Scholar 

  • Williams, I. J. 1972. A revision of the genusLeucadendron (Proteaceae). Contr. Bolus Herb.3: 1–425.

    Google Scholar 

  • Williams, S. E., A. G. Wollum andE. F. Aldon. 1974. Growth ofAtriplex canescens (Pursh) Nutt. improved by formation of vesicular-arbuscular mycorrhizae. Proc. Soil Sci. Soc. Amer.38: 962–965.

    Article  Google Scholar 

  • Williamson, B. 1973. Acid phosphatase and esterase activity in orchid mycorrhiza. Planta112: 149–158.

    Article  CAS  Google Scholar 

  • Wolswinkel, P. 1974. Complete inhibition of setting and growth of fruits ofVicia faba L., resulting from the draining of the phloem system byCuscuta species. Acta Bot. Neerl.23: 48–60.

    Google Scholar 

  • Wood, J. G. 1924. The relations between distribution, structure and transpiration of South Australian plants. Trans. Proc. Roy. Soc. South Australia48: 226–235.

    Google Scholar 

  • Woolhouse, H. W. 1969. Differences in the properties of acid phosphatases of plant roots and their significance in the evolution of edaphic ecotypes. Pages 357–380in I. H. Rorison (ed.). Ecological aspects of the mineral nutrition of plants. Blackwell, Oxford.

    Google Scholar 

  • Wright, C. H. 1904. Solanaceae. Pages 87–121in W. T. Thiselton-Dyer (ed.). Flora Capensis. 5. Reeve, London.

    Google Scholar 

  • —. 1912. Chenopodiaceae. Pages 433–454in W. T. Thiselton-Dyer (ed.). Flora Capensis. 5. Reeve, London.

    Google Scholar 

  • Wullstein, L. H. andS. A. Pratt. 1981. Scanning electron microscopy of rhizosheaths ofOryzopsis hymenoides. Amer. J. Bot.68: 408–419.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Reprints of this issue [48(3)] may be obtained from: Publications Office, The New York Botanical Garden, Bronx, NY 10458, USA. PRICE (includes postage and handling fee): U.S.ORDERS: $9.25.NON- U.S. ORDERS: $10.00. (Payment in U.S. currency drawn on a U.S. bank. Thank you.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamont, B. Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia. Bot. Rev 48, 597–689 (1982). https://doi.org/10.1007/BF02860714

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860714

Keywords

Navigation