Skip to main content
Log in

Diversity of rhizobia and interactions among the host legumes and rhizobial genotypes in an agricultural-forestry ecosystem

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

To investigate the diversity of rhizobia and interactions among the host legumes and rhizobial genotypes in the same habitat, a total of 97 rhizobial strains isolated from nine legume species grown in an agricultural-forestry ecosystem were identified into seven genomic species and 12 symbiotic genotypes within the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium based upon analyses of genomic DNA regions and symbiotic genes. The results evidenced that the symbiotic genotypes of rhizobia were consistent with their hosts of origin; revealed that vertical transfer was the main mechanism in rhizobia to maintain the symbiotic genes but lateral transfer of symbiotic genes might have happened between the closely related rhizobial species; suggested the existence of co-distribution and co-evolution among the legume hosts and compatible rhizobia. All of these data demonstrated that the biogeography of rhizobia was a result of interactions among the host legumes, bacterial genomic backgrounds and environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barcellos FG, Menna P, da Silva Batista JS, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol 73:2635–2643

    Article  PubMed  CAS  Google Scholar 

  • Camacho M, Santamaría C, Temprano F, Rodríguez-Navarro DN, Daza A, Espuny R, Bellogín R, Ollero FJ, Lyra de MC, Buendía-Clavería A, Zhou J, Li FD, Mateos C, Velázquez E, Vinardell JM, Ruiz-Sainz JE (2002) Soils of the Chinese Hubei province show a very high diversity of Sinorhizobium fredii strains. Syst Appl Microbiol 25:592–602

    Article  PubMed  CAS  Google Scholar 

  • Chen WX, Li GS, Qi YL, Wang ET, Yuan HL, Li JL (1991) Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41:275–280

    Google Scholar 

  • Chen WX, Wang ET, Wang SY, Li YB, Chen XQ, Li Y (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from and arid saline environmental in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45:153–159

    PubMed  CAS  Google Scholar 

  • De Bruijn FJ (1992) Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 58:2180–2187

    PubMed  Google Scholar 

  • Del Villar M, Rivas R, Peix A, Mateos PF, Martínez-Molina E, van Berkum P, Willems A, Velázquez E (2008) Stable low molecular weight RNA profiling showed variations within Sinorhizobium meliloti and Sinorhizobium medicae nodulating different legumes from the alfalfa cross-inoculation group. FEMS Microbiol Lett 282:273–281

    Article  PubMed  CAS  Google Scholar 

  • Deng S, Hiruki C (1991) Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. J Microbiol Methods 14:53–61

    Article  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  PubMed  CAS  Google Scholar 

  • Gao JL, Sun JG, Li Y, Wang ET, Chen WX (1994) Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Bacteriol 44:151–158

    Google Scholar 

  • Gu CT, Wang ET, Sui XH, Chen WF, Chen WX (2007) Diversity and geographical distribution of rhizobia associated with Lespedeza spp. in temperate and subtropical regions of China. Arch Microbiol 188:355–365

    Article  PubMed  CAS  Google Scholar 

  • Han SZ, Wang ET, Chen WX (2005) Diverse bacteria isolated from root nodules of Phaseolus vulgaris and species within the genera Campylotropis and Cassia grown in China. Syst Appl Microbiol 28:265–276

    Article  PubMed  CAS  Google Scholar 

  • Han TX, Wang ET, Han LL, Chen WF, Sui XH, Chen WX (2008) Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Syst Appl Microbiol doi:10.1016/j.syapm.2008.04.004

  • Hou BC, Wang ET, Li Y, Jia RZ, Chen WF, Man CX, Sui XH, Chen WX (2008) Rhizobial resource associated with the epidemic legumes in Tibet. Microbial Ecol doi:10.1007/s00248-008-9397-4

  • Kan FL, Chen ZY, Wang ET, Tian CF, Sui XH, Chen WX (2007) Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai–Tibet plateau and in other zones of China. Arch Microbiol 188:103–115

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tomura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505

    Article  CAS  Google Scholar 

  • Laguerre G, Allard MR, Revoy F, Amarger N (1994) Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63

    PubMed  CAS  Google Scholar 

  • Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993

    PubMed  CAS  Google Scholar 

  • Lei X, Wang ET, Chen WF, Sui XH, Chen WX (2008) Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Arch Microbiol (in press)

  • Lin DX, Man CX, Wang ET, Chen WX (2007) Diverse rhizobia that nodulate two species of Kummerowia in China. Arch Microbiol 188:495–507

    Article  PubMed  CAS  Google Scholar 

  • Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a novel symbiotic bacterium isolated from root nodule of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Wang ET, Chen WX (2005) Diverse rhizobia associated with woody legumes Wisteria sinensis, Cercis racemosa and Amorpha fruticosa grown in the temperate zone of China. Syst Appl Microbiol 28:465–477

    Article  PubMed  CAS  Google Scholar 

  • Liu XY, Wang ET, Li Y, Chen WX (2007) Diverse bacteria isolated from root nodules of Trifolium, Crotalaria and Mimosa grown in the subtropical regions of China. Arch Microbiol 188:1–14

    Article  PubMed  CAS  Google Scholar 

  • Maidak BL, Larsen N, McCaughey MJ, Overbeek R, Olsen GJ, Fogel K, Blandy J, Woese CR (1994) The ribosomal database project. Nucleic Acids Res 22:3485–3487

    Article  PubMed  CAS  Google Scholar 

  • Man CX, Wang H, Chen WF, Sui XH, Wang ET, Chen WX (2008) Rhizobial community associated with soybean naturally grown in the subtropical and tropical regions of China. Plant Soil doi:10.1007/s11104-008-9631-3

  • Mnasri B, Mrabet M, Laguerre G, Aouani ME, Mhamdi R (2007) Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Arch Microbiol 187:79–85

    Article  PubMed  CAS  Google Scholar 

  • Moulin L, Béna G, Boivin-Masson C, Stepkowski T (2004) Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 30:720–732

    Article  PubMed  CAS  Google Scholar 

  • Navarro E, Simonet P, Normand P, Bardin R (1992) Characterization of natural population of Nitrobacter spp. using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch Microbiol 157:107–115

    PubMed  CAS  Google Scholar 

  • Nick G, Lindstrom K (1994) Use of repetitive sequences and the polymerase chain reaction to fingerprint the genomic DNA of R. galegae strains and to identify the DNA obtained by sonicating liquid cultures and root nodules. Syst Appl Microbiol 17:265–273

    CAS  Google Scholar 

  • Nick G, Rasanen LA, de Lajudie P, Gillis M, Lindstrom K (1999) Genomic screening of rhizobia isolated from root nodules of tropical leguminous trees using DNA–DNA dot-blot hybridization and rep-PCR. Syst Appl Microbiol 22:287–299

    Google Scholar 

  • Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino MP, Goltsman E, Huang Y, Kopp OR, Labarre L, Lapidus A, Lavire C, Marechal J, Martinez M, Mastronunzio JE, Mullin BC, Niemann J, Pujic P, Rawnsley T, Rouy Z, Schenowitz C, Sellstedt A, Tavares F, Tomkins JP, Vallenet D, Valverde C, Wall LG, Wang Y, Medigue C, Benson DR (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15

    Article  PubMed  Google Scholar 

  • Pérez-Ramírez NO, Rogel MA, Wang E, Castellanos JZ, Martínez-Romero E (1998) Seeds of Phaseolus vulgaris bean carry Rhizobium etli. FEMS Microbiol Ecol 26:289–296

    Google Scholar 

  • Ponsonnet C, Nesme X (1994) Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch Microbiol 161:300–309

    PubMed  CAS  Google Scholar 

  • Rivas R, Velazquez E (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) Druce. Appl Environ Microbiol 68:5217–5222

    Article  PubMed  CAS  Google Scholar 

  • Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11

    Article  PubMed  CAS  Google Scholar 

  • Segovia L, Young JPW, Martinez-Romero E (1993) Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377

    PubMed  CAS  Google Scholar 

  • Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS (1986) Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884

    PubMed  CAS  Google Scholar 

  • Sullivan JT, Eardly BD, van Berkum P, Ronson CW (1996) Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus. Appl Environ Microbiol 62:2818–2825

    PubMed  CAS  Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  PubMed  CAS  Google Scholar 

  • Terefework Z, Kaijalainen S, Lindstrom K (2001) AFLP fingerprint as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega offcinalis. J Biotechnol 91:169–180

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougim F, Higgins DG (1997) The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acids Res 24:4867–4882

    Google Scholar 

  • Tian CF, Wang ET, Han TX, Sui XH, Chen WX (2007) Genetic diversity of rhizobia associated with Vicia faba in three ecological regions of China. Arch Microbiol 188:273–282

    Article  PubMed  CAS  Google Scholar 

  • Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E (2006) Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 56:2631–2637

    Article  PubMed  CAS  Google Scholar 

  • van Berkum P, Beyene B, Eardly BD (1996) Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaesolus vulgaris L.). Int J Syst Bacteriol 46:240–244

    PubMed  Google Scholar 

  • Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512

    Article  PubMed  Google Scholar 

  • Vauterin L, Vauterin P (1992) Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur Microbiol 1:37–41

    Google Scholar 

  • Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell Scientific, Oxford

    Google Scholar 

  • Vinuesa P, Leon-Barrios M, Silva C (2005a) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575

    Article  PubMed  CAS  Google Scholar 

  • Vinuesa P, Silva C, Werner D, Martinez-Romero E (2005b) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–53

    Article  PubMed  CAS  Google Scholar 

  • Wang ET, Martinez-Romero J, Martinez-Romero E (1999a) Genetic diversity of rhizobia from Leucaena leucocephala nodules in Mexican soils. Mol Ecol 8:711–724

    Article  Google Scholar 

  • Wang ET, van Berkum P, Sui XH (1999b) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soil and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65

    Article  PubMed  Google Scholar 

  • Wang FQ, Wang ET, Zhang YF, Chen WX (2006) Characterization of rhizobia isolated from Albizia spp. in comparison with microsymbionts of Acacia spp. and Leucaena leucocephala grown in China. Syst Appl Microbiol 29:502–517

    Article  PubMed  CAS  Google Scholar 

  • Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX (2002) Description of Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov. isolated from Indigofera spp. and Kummerowia stipulacea respectively. Int J Syst Evol Microbiol 52:2231–2239

    Article  PubMed  CAS  Google Scholar 

  • Yao ZY, Kan FL, Wang ET, Wei GH, Chen WX (2002) Characterization of rhizobia nodulating legume species within the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by the foundation of the State Key Basic Research and Development Plan of China (grant 2006CB100206), National Natural Science Foundation of China (grant 30670001), and by National Project for Basic S&T Platform Construction (grant 2005DKA21201-10). ETW was supported by the project of SIP 20070538 and 20080322 authorized by IPN, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Xin Chen.

Additional information

Responsible Editor: Euan K. James.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. A

Dendrogram based on BOX-PCR fingerprints showing the genetic diversity of Vicia rhizobia belonging to Rhizobium–Sinorhizobium, Mesorhizobium and Bradyrhizobium. (PDF 136 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Man, C.X., Wang, E.T. et al. Diversity of rhizobia and interactions among the host legumes and rhizobial genotypes in an agricultural-forestry ecosystem. Plant Soil 314, 169–182 (2009). https://doi.org/10.1007/s11104-008-9716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9716-z

Keywords

Navigation