Skip to main content
Log in

Diverse bacteria isolated from root nodules of Trifolium, Crotalaria and Mimosa grown in the subtropical regions of China

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

To analyze the diversity and relationships of rhizobia in the subtropical and tropical zones of China, we characterized 67 bacterial strains isolated from root nodules of five legume species in the genera Trifolium, Crotalaria and Mimosa . PCR-amplified 16S rDNA RFLP, numerical taxonomy, SDS-PAGE of whole cell proteins, sequencing of 16S rDNA and DNA–DNA hybridization grouped the isolates into 17 lineages belonging to Bradyrhizobium, Mesorhizobium, Rhizobium, Sinorhizobium and Burkholderia, as well as a non-symbiotic group of Agrobacterium. The Rhizobium group contained twenty strains isolated from Mimosa pudica, Crotalaria pallida and two species of Trifolium. Fifteen of them were R. leguminosarum. Twenty-one strains isolated from four species of Trifolium, Crotalaria and Mimosa were classified into five groups of Bradyrhizobium, including B. japonicum. Agrobacterium group composed of 20 isolates from Mimosa pudica, C. pallida and Trifolium fragiferum. In addition, several strains of Sinorhizobium and Mesorhizobium associated with Trifolium and Burkholderia associated with Mimosa pudica were also identified. The predominance of Bradyrhizobium in the nodules of Trifolium was a novel finding and it demonstrated that the nodule microsymbionts might be selected by both the geographic factors and the legume hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barrera LL, Trujillo ME, Goodfellow M, Garcia FJ, Hernández-Lucas I, Davila G, van Berkum P, Martínez-Romero E (1997) Biodiversity of bradyrhizobia nodulating Lupinus spp. Int J Syst Bacteriol 47:1086–1091

    PubMed  CAS  Google Scholar 

  • Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27:462–468

    Article  PubMed  CAS  Google Scholar 

  • Barrett CF, Parker MA (2005) Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. Syst Appl Microbiol 28:57–65

    Article  PubMed  CAS  Google Scholar 

  • Barrett CF, Parker MA (2006) Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol 72:1198–1206

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, Laevens S, Lee TW, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735

    PubMed  CAS  Google Scholar 

  • Chen WM, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by ß-proteobacteria is widespread in nature. J Bacteriol 185:7266–7272

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, James EK, Chou JH, Sheu SY, Yang SZ, Sprent JI (2005) ß-rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New Phytol 168:661–675

    Article  PubMed  CAS  Google Scholar 

  • Chen WX, Wang ET, Wang SY, Li YB, Chen XQ, Li Y (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45:153–159

    PubMed  CAS  Google Scholar 

  • de Lajudie P, Willems A, Nick G, Mohamed TS, Torck U, filai-Maltouf A, Kersters K, Dreyfus B, Lindström K, Gillis M (1999) Agrobacterium bv. 1 strains isolated from nodules of tropical legumes. Syst Appl Microbiol 22:119–132

    Google Scholar 

  • De Ley J (1970) Reexamination of the association between melting point, buoyant density, and chemical base composition of DNA. J Bacteriol 101:738–754

    PubMed  Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Doignon-Bourcier F, Sy A, Willems A, Torck U, Dreyfus B, Gillis M, de Lajudie P (2000) Diversity of bradyrhizobia from 27 tropical leguminosae species native of Senegal. Syst Appl Microbiol 22:649–661

    Google Scholar 

  • Dowdle SF, Bohlool BB (1985) Predominance of fast-growing Rhizobium japonicum in a soybean field in the People’s Republic of China. Appl Environ Microbiol 50:1171–1176

    PubMed  Google Scholar 

  • Dupuy N, Willems A, Pot B, Dewettinck D, Vandenbruaene I, Maestrojuan G, Dreyfus B, Kersters K, Collins MD, Gillis M (1994) Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int J Syst Bacteriol 44:461–473

    PubMed  CAS  Google Scholar 

  • Estrada-de Los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1997) An alternating least squares approach to inferring phylogenies from pairwise distances. Syst Biol 46:101–111

    Article  PubMed  CAS  Google Scholar 

  • Gao JL, Sun JG, Li Y, Wang ET, Chen WX (1994) Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Bacteriol 44:151–158

    Google Scholar 

  • Han SZ, Wang ET, Chen WX (2005) Diverse rhizobia isolated from root nodules of Phaseolus vulgaris and species within the genera Campylotropis and Cassia grown in China. Syst Appl Microbiol 28:265–276

    Article  PubMed  CAS  Google Scholar 

  • Hollis AB, Kloos WE, Elkan GH (1981) DNA:DNA hybridization studies of Rhizobium japonicum and related Rhizobiaceae. J Gen Microbiol 123:215–222

    Google Scholar 

  • Jordan DC (1984) Family III. Rhizobiaceae Conn 1938, 321AL. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 234–254

    Google Scholar 

  • Jourand P, Giraud E, Bena G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273

    Article  PubMed  CAS  Google Scholar 

  • Lafay B, Burdon JJ (1998) Molecular diversity of rhizobia occurring on native shrubby legumes in southeastern Australia. Appl Environ Microbiol 64:3989–3997

    CAS  PubMed  Google Scholar 

  • Laguerre G., Allard M, Revoy F, Amarger N (1994) Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 61:56–63

    Google Scholar 

  • Mhamdi R, Lagrerre G, Aouani ME, Mars M, Amarger N (2002) Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbio Ecol 41:77–84

    Article  CAS  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996) Tree view: an application to display phylogenetic trees on personal computers. Comput App Biosci 12:357–358

    CAS  Google Scholar 

  • Rivas R, Velázquez E, Willems A, Vizcaíno N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martínez-Molina E (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.F.) Druce. Appl Environ Microbiol 68:5217–5222

    Article  PubMed  CAS  Google Scholar 

  • Rivas R, Willems A, Palomo LJ, García-Benavides P, Mateos FP, Martínez-Molina E, Gillis M, Velázquez E (2004) Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. Int J Syst Bacteriol 54:1271–1275

    CAS  Google Scholar 

  • Samba RT, de Lajudie P, Gillis M, Neyra M, Spencer-Barreto M, Dreyfus B (1999) Diversity of rhizobia nodulating Crotalaria spp. from Senegal. Symbiosis 27:259–268

    Google Scholar 

  • Sambrook J, Russell DW (1989) Molecular cloning—a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Seguin P, Graham PH, Sheaffer CC, Ehlke NJ, Russelle MP (2001) Genetic diversity of rhizobia nodulating Trifolium ambiguum in North America. Can J Microbiol 47:81–85

    Article  PubMed  CAS  Google Scholar 

  • Sneath PHA, Sokal RB (1973) Numerical taxonomy. The principles and practice of numerical classification. (W.H.) Freeman, San Francisco

    Google Scholar 

  • So RB, Ladha JK, Young JPW (1994) Photosynthetic symbionts of Aeschynomene spp. form a cluster with bradyrhizobia on the basis of fatty acid and rRNA analyses. Int J Syst Bacteriol 44:392–403

    PubMed  CAS  Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajiudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  PubMed  CAS  Google Scholar 

  • Tan ZY, Xu XD, Wang ET, Gao JL, Martínez-Romero E, Chen WX (1997) Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47:874–879

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougim F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucl Acid Res 24:4867–4882

    Google Scholar 

  • Trinick MJ, Goodchild DJ, Miller C (1989) Localization of bacteria and hemoglobin in root nodules of Parasponia andersonii containing both Bradyrhizobium strains and Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 55:2046–2055

    PubMed  Google Scholar 

  • Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludeña D, Mateos PF, Martínez-Molina E, Velázquez1 E (2005) Nodulation of Lupinus albus by Strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327

    Article  PubMed  CAS  Google Scholar 

  • Valverde A, Velázquez E, Fernández-Santos F, Vizcaíno N, Rivas R, Mateos PF, Martínez-Molina E, Igual JM, Willems A (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989

    Article  PubMed  CAS  Google Scholar 

  • van Berkum P, Beyene B, Eardly BD (1996) Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaesolus vulgaris L.). Int J Syst Bacteriol 46:240–244

    PubMed  Google Scholar 

  • van Berkum P, Eardly BD (2002) The aquatic budding bacterium Blastobacter denitrificans is a nitrogen-fixing symbiont of Aeschynomene indica. Appl Environ Microbiol 68:1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289

    Article  PubMed  Google Scholar 

  • Vandamme P, Goris J, Chen WM, De Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 6:507–512

    Article  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell Oxford

    Google Scholar 

  • Vinuesa P, Rademaker JLW, de Bruijin FJ, Werner D (1998) Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-Restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S-23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16S rDNA sequencing. Appl Environ Microbiol 64:2096–2104

    PubMed  CAS  Google Scholar 

  • Wang ET, Rogel MA, Gracía-de los Santos A, Martínez-Romero J, Cevallos MA, Martínez-Romero E (1999) Rhizobium etli bv. mimosae isolated from Mimosa affinis. Int J Syst Bacterial 49:1479–1491

    Article  CAS  Google Scholar 

  • Wang LL, Wang ET, Liu J, Li Y, Chen WX (2006) Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microb Ecol 52:436–443

    Article  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletior DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Willems A, Coopman R, Gillis M (2001) Phylogenetic and DNA-DNA hybridization analyses of Bradyrhizobium species. Int J Syst Evol Microbiol 51:111–117

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the State Key Basic Research and Development Plan of China (grant No. 2001CB108905), by National Project for Basic S & T Platform Construction (grant No.2005DKA30560-1) and by National Natural Science Foundation of China (grant No. 30570001). ETW thanks IPN for the grant of CGPI 20060213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Xin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X.Y., Wang, E.T., Li, Y. et al. Diverse bacteria isolated from root nodules of Trifolium, Crotalaria and Mimosa grown in the subtropical regions of China. Arch Microbiol 188, 1–14 (2007). https://doi.org/10.1007/s00203-007-0209-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0209-x

Keywords

Navigation