Skip to main content
Log in

Rapid sequence evolution is associated with genetic incompatibilities in the plastid Clp complex

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Replacing the native clpP1 gene in the Nicotiana plastid genome with homologs from different donor species showed that the extent of genetic incompatibilities depended on the rate of sequence evolution.

Abstract

The plastid caseinolytic protease (Clp) complex plays essential roles in maintaining protein homeostasis and comprises both plastid-encoded and nuclear-encoded subunits. Despite the Clp complex being retained across green plants with highly conserved protein sequences in most species, examples of extremely accelerated amino acid substitution rates have been identified in numerous angiosperms. The causes of these accelerations have been the subject of extensive speculation but still remain unclear. To distinguish among prevailing hypotheses and begin to understand the functional consequences of rapid sequence divergence in Clp subunits, we used plastome transformation to replace the native clpP1 gene in tobacco (Nicotiana tabacum) with counterparts from another angiosperm genus (Silene) that exhibits a wide range in rates of Clp protein sequence evolution. We found that antibiotic-mediated selection could drive a transgenic clpP1 replacement from a slowly evolving donor species (S. latifolia) to homoplasmy but that clpP1 copies from Silene species with accelerated evolutionary rates remained heteroplasmic, meaning that they could not functionally replace the essential tobacco clpP1 gene. These results suggest that observed cases of rapid Clp sequence evolution are a source of epistatic incompatibilities that must be ameliorated by coevolutionary responses between plastid and nuclear subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are included as supplementary material, and transformation constructs are available via Addgene accessions 173,794–173,797.

Code availability

Not applicable.

References

  • Adrion JR, White PS, Montooth KL (2016) The roles of compensatory evolution and constraint in aminoacyl tRNA synthetase evolution. Mol Biol Evol 33:152

    Article  CAS  PubMed  Google Scholar 

  • Aguileta G, Refregier G, Yockteng R, Fournier E, Giraud T (2009) Rapidly evolving genes in pathogens: methods for detecting positive selection and examples among fungi, bacteria, viruses and protists. Infect Genet Evol 9:656–670

    Article  CAS  PubMed  Google Scholar 

  • Apitz J, Nishimura K, Schmied J, Wolf A, Hedtke B, van Wijk KJ, Grimm B (2016) Posttranslational control of ALA synthesis includes GluTR degradation by Clp protease and stabilization by GluTR-binding protein. Plant Physiol 170:2040–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnard-Kubow KB, So N, Galloway LF (2016) Cytonuclear incompatibility contributes to the early stages of speciation. Evolution 70:2752–2766

    Article  CAS  PubMed  Google Scholar 

  • Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  CAS  PubMed  Google Scholar 

  • Bogdanova VS, Zaytseva OO, Mglinets AV, Shatskaya NV, Kosterin OE, Vasiliev GV (2015) Nuclear-cytoplasmic conflict in pea (Pisum sativum L.) is associated with nuclear and plastidic candidate genes encoding acetyl-CoA carboxylase subunits. PLoS ONE 10:e0119835

    Article  PubMed  PubMed Central  Google Scholar 

  • Dittmar D, Reder A, Schlüter R, Riedel K, Hecker M, Gerth U (2020) Complementation studies with human ClpP in Bacillus subtilis. Biochim Biophys Acta 1867:118744

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:39–40

    Google Scholar 

  • Erixon P, Oxelman B (2008) Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene. PLoS ONE 3:e1386

    Article  PubMed  PubMed Central  Google Scholar 

  • Fajardo D, Senalik D, Ames M, Zhu H, Steffan SA, Harbut R, Polashock J, Vorsa N, Gillespie E, Kron K (2013) Complete plastid genome sequence of Vaccinium macrocarpon: structure, gene content, and rearrangements revealed by next generation sequencing. Tree Genet Genomes 9:489–498

    Article  Google Scholar 

  • Forsythe ES, Williams AM, Sloan DB (2021) Genome-wide signatures of plastid-nuclear coevolution point to repeated perturbations of plastid proteostasis systems across angiosperms. Plant Cell 33:980

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujii S, Bond CS, Small ID (2011) Selection patterns on restorer-like genes reveal a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Proc Natl Acad Sci USA 108:1723–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  CAS  PubMed  Google Scholar 

  • Gray MW (2012) Mitochondrial evolution. Cold Spring Harb Perspect Biol 4:a011403

    Article  PubMed  PubMed Central  Google Scholar 

  • Greiner S, Rauwolf U, Meurer J, Herrmann RG (2011) The role of plastids in plant speciation. Mol Ecol 20:671–691

    Article  PubMed  Google Scholar 

  • Greiner S, Golczyk H, Malinova I, Pellizzer T, Bock R, Börner T, Herrmann RG (2020) Chloroplast nucleoids are highly dynamic in ploidy, number, and structure during angiosperm leaf development. Plant J 102:730–746

    Article  CAS  PubMed  Google Scholar 

  • Haberle RC, Fourcade HM, Boore JL, Jansen RK (2008) Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J Mol Evol 66:350–361

    Article  CAS  PubMed  Google Scholar 

  • Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havird JC, Trapp P, Miller C, Bazos I, Sloan DB (2017) Causes and consequences of rapidly evolving mtDNA in a plant lineage. Genome Biol Evol 9:323–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havird JC, Forsythe ES, Williams AM, Werren JH, Dowling DK, Sloan DB (2019) Selfish mitonuclear conflict. Curr Biol 29:R496–R511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirao T, Watanabe A, Kurita M, Kondo T, Takata K (2008) Complete nucleotide sequence of the Cryptomeria japonica D. Don chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC Plant Biol 8:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang C, Wang S, Chen L, Lemieux C, Otis C, Turmel M, Liu X-Q (1994) The Chlamydomonas chloroplast clpP gene contains translated large insertion sequences and is essential for cell growth. Mol Gen Genet 244:151–159

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170

    Article  CAS  PubMed  Google Scholar 

  • Jafari F, Zarre S, Gholipour A, Eggens F, Rabeler RK, Oxelman B (2020) A new taxonomic backbone for the infrageneric classification of the species-rich genus Silene (Caryophyllaceae). Taxon 69:337–368

    Article  Google Scholar 

  • Kanevski I, Maliga P, Rhoades DF, Gutteridge S (1999) Plastome engineering of ribulose-1, 5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid. Plant Physiol 119:133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Rudella A, Rodriguez VR, Zybailov B, Olinares PDB, van Wijk KJ (2009) Subunits of the plastid ClpPR protease complex have differential contributions to embryogenesis, plastid biogenesis, and plant development in Arabidopsis. Plant Cell 21:1669–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Olinares PD, Oh S-h, Ghisaura S, Poliakov A, Ponnala L, van Wijk KJ (2013) Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis. Plant Physiol 162:157–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koussevitzky S, Stanne TM, Peto CA, Giap T, Sjögren LL, Zhao Y, Clarke AK, Chory J (2007) An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol Biol 63:85–96

    Article  CAS  PubMed  Google Scholar 

  • Kuroda H, Maliga P (2003) The plastid clpP1 protease gene is essential for plant development. Nature 425:86–89

    Article  CAS  PubMed  Google Scholar 

  • Liao JYR, Friso G, Forsythe ES, Williams AM, Michel EJS, Buraraev SS, Ponnala L, Sloan DB, van Wijk KJ (2022) Proteomics, phylogenetics, and co-expression analyses indicate novel interactions in the plastid CLP chaperone-protease system. J Biol Chem (In press)

  • Majeran W, Wollman F-A, Vallon O (2000) Evidence for a role of ClpP in the degradation of the chloroplast cytochrome b6f complex. Plant Cell 12:137–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maliga P, Moll B, Svab Z (1990) Toward manipulation of plastid genes in higher plants. In: Zelitch I (ed) Perspectives in genetic and biochemical regulation of photosynthesis. Wiley, New York, pp 133–143

    Google Scholar 

  • Montandon C, Friso G, Liao J-YR, Choi J, van Wijk KJ (2019) In vivo trapping of proteins interacting with the chloroplast CLPC1 chaperone: potential substrates and adaptors. J Proteome Res 18:2585–2600

    Article  CAS  PubMed  Google Scholar 

  • Moreno JC, Tiller N, Diez M, Karcher D, Tillich M, Schöttler MA, Bock R (2017) Generation and characterization of a collection of knock-down lines for the chloroplast Clp protease complex in tobacco. J Exp Bot 68:2199–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno JC, Martínez-Jaime S, Schwartzmann J, Karcher D, Tillich M, Graf A, Bock R (2018) Temporal proteomics of inducible RNAi lines of Clp protease subunits identifies putative protease substrates. Plant Physiol 176:1485–1508

    Article  CAS  PubMed  Google Scholar 

  • Nishimura K, van Wijk KJ (2015) Organization, function and substrates of the essential Clp protease system in plastids. BBA-Bioenergetics 1847:915–930

    Article  CAS  PubMed  Google Scholar 

  • Nishimura K, Asakura Y, Friso G, Kim J, Oh S-h, Rutschow H, Ponnala L, van Wijk KJ (2013) ClpS1 is a conserved substrate selector for the chloroplast Clp protease system in Arabidopsis. Plant Cell 25:2276–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura K, Apitz J, Friso G, Kim J, Ponnala L, Grimm B, van Wijk KJ (2015) Discovery of a unique Clp component, ClpF, in chloroplasts: a proposed binary ClpF-ClpS1 adaptor complex functions in substrate recognition and delivery. Plant Cell 27:2677–2691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nováková E, Zablatzká L, Brus J, Nesrstová V, Hanáček P, Kalendar R, Cvrčková F, Majeský Ľ, Smýkal P (2019) Allelic diversity of acetyl coenzyme A carboxylase accD/bccp genes implicated in nuclear-cytoplasmic conflict in the wild and domesticated pea (Pisum sp.). Int J Mol Sci 20:1773

    Article  PubMed Central  Google Scholar 

  • Osada N, Akashi H (2012) Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex. Mol Biol Evol 29:337

    Article  CAS  PubMed  Google Scholar 

  • Pett W, Lavrov DV (2015) Cytonuclear interactions in the evolution of animal mitochondrial tRNA metabolism. Genome Biol Evol 7:2089–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulido P, Llamas E, Llorente B, Ventura S, Wright LP, Rodríguez-Concepción M (2016) Specific Hsp100 chaperones determine the fate of the first enzyme of the plastidial isoprenoid pathway for either refolding or degradation by the stromal Clp protease in Arabidopsis. PLoS Genet 12:e1005824

    Article  PubMed  PubMed Central  Google Scholar 

  • Rand DM, Haney RA, Fry AJ (2004) Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 19:645–653

    Article  PubMed  Google Scholar 

  • Rautenberg A, Sloan DB, Aldén V, Oxelman B (2012) Phylogenetic relationships of Silene multinervia and Silene section Conoimorpha (Caryophyllaceae). Syst Bot 37:226–237

    Article  Google Scholar 

  • Rockenbach KD, Havird JC, Monroe JG, Triant DA, Taylor DR, Sloan DB (2016) Positive selection in rapidly evolving plastid-nuclear enzyme complexes. Genetics 204:1507–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roger AJ, Muñoz-Gómez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27:R1177–R1192

    Article  CAS  PubMed  Google Scholar 

  • Rousseau-Gueutin M, Ayliffe MA, Timmis JN (2011) Conservation of plastid sequences in the plant nuclear genome for millions of years facilitates endosymbiotic evolution. Plant Physiol 157:2181–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz-Linneweber C, Kushnir S, Babiychuk E, Poltnigg P, Herrmann RG, Maier RM (2005) Pigment deficiency in nightshade/tobacco cybrids is caused by the failure to edit the plastid ATPase alpha-subunit mRNA. Plant Cell 17:1815–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikanai T, Shimizu K, Ueda K, Nishimura Y, Kuroiwa T, Hashimoto T (2001) The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol 42:264–273

    Article  CAS  PubMed  Google Scholar 

  • Sjögren LL, Stanne TM, Zheng B, Sutinen S, Clarke AK (2006) Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis. Plant Cell 18:2635–2649

    Article  PubMed  PubMed Central  Google Scholar 

  • Sloan DB, Triant DA, Forrester NJ, Bergner LM, Wu M, Taylor DR (2014a) A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae). Mol Phylogenet Evol 72:82–89

    Article  CAS  PubMed  Google Scholar 

  • Sloan DB, Triant DA, Wu M, Taylor DR (2014b) Cytonuclear interactions and relaxed selection accelerate sequence evolution in organelle ribosomes. Mol Biol Evol 31:673–682

    Article  CAS  PubMed  Google Scholar 

  • Sloan DB, Havird JC, Sharbrough J (2017) The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol Ecol 26:2212–2236

    Article  PubMed  PubMed Central  Google Scholar 

  • Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC (2018) Cytonuclear integration and co-evolution. Nat Rev Genet 19:635–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobanski J, Giavalisco P, Fischer A, Kreiner JM, Walther D, Schöttler MA, Pellizzer T, Golczyk H, Obata T, Bock R (2019) Chloroplast competition is controlled by lipid biosynthesis in evening primroses. Proc Natl Acad Sci USA 116:5665–5674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straub SC, Fishbein M, Livshultz T, Foster Z, Parks M, Weitemier K, Cronn RC, Liston A (2011) Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing. BMC Genomics 12:211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang J (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci USA 98:5099–5103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapken W, Kim J, Nishimura K, van Wijk KJ, Pilon M (2015) The Clp protease system is required for copper ion-dependent turnover of the PAA 2/HMA 8 copper transporter in chloroplasts. New Phytol 205:511–517

    Article  CAS  PubMed  Google Scholar 

  • Touzet P, Budar F (2004) Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility? Trends Plant Sci 9:568–570

    Article  CAS  PubMed  Google Scholar 

  • Welsch R, Zhou X, Yuan H, Álvarez D, Sun T, Schlossarek D, Yang Y, Shen G, Zhang H, Rodriguez-Concepcion M (2018) Clp protease and OR directly control the proteostasis of phytoene synthase, the crucial enzyme for carotenoid biosynthesis in Arabidopsis. Mol Plant 11:149–162

    Article  CAS  PubMed  Google Scholar 

  • Weng ML, Ruhlman TA, Jansen RK (2016) Plastid-nuclear interaction and accelerated coevolution in plastid ribosomal genes in Geraniaceae. Genome Biol Evol 8:1824–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams AV, Boykin LM, Howell KA, Nevill PG, Small I (2015) The complete sequence of the Acacia ligulata chloroplast genome reveals a highly divergent clpP1 gene. PLoS ONE 10:e0125768

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams AM, Friso G, van Wijk KJ, Sloan DB (2019) Extreme variation in rates of evolution in the plastid Clp protease complex. Plant J 98:243–259

    Article  CAS  PubMed  Google Scholar 

  • Wu G-Z, Chalvin C, Hoelscher M, Meyer EH, Wu XN, Bock R (2018) Control of retrograde signaling by rapid turnover of GENOMES UNCOUPLED1. Plant Physiol 176:2472–2495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Ye G, Werren J (2019) Evolutionary rate correlation between mitochondrial-encoded and mitochondria-associated nuclear-encoded proteins in insects. Mol Biol Evol 36:1022–1036

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Tang P, Li Z, Li D, Liu Y, Huang H (2015) The first complete chloroplast genome sequences in Actinidiaceae: genome structure and comparative analysis. PLoS ONE 10:e0129347

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ma J, Yang B, Li R, Zhu W, Sun L, Tian J, Zhang L (2014) The complete chloroplast genome sequence of Taxus chinensis var. mairei (Taxaceae): loss of an inverted repeat region and comparative analysis with related species. Gene 540:201–209

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ruhlman TA, Sabir J, Blazier JC, Jansen RK (2015) Coordinated rates of evolution between interacting plastid and nuclear genes in Geraniaceae. Plant Cell 27:563–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Ruhlman TA, Sabir JS, Blazier JC, Weng ML, Park S, Jansen RK (2016) Coevolution between nuclear-encoded DNA replication, recombination, and repair genes and plastid genome complexity. Genome Biol Evol 8:622–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng B, MacDonald TM, Sutinen S, Hurry V, Clarke AK (2006) A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana. Planta 224:1103–1115

    Article  CAS  PubMed  Google Scholar 

  • Zupok A, Kozul D, Schöttler MA, Niehörster J, Garbsch F, Liere K, Malinova I, Bock R, Greiner S (2020) A photosynthesis operon in the chloroplast genome drives speciation in evening primroses. Plant Cell 33:2583

    Article  Google Scholar 

Download references

Acknowledgements

We thank Alissa Williams and two anonymous reviewers for comments on an earlier version of this manuscript and Zora Svab, Amber Torres and Matheus Fernandes Gyorfy for lab assistance. This work was supported by a Grant from the National Science Foundation (MCB-1733227).

Funding

National Science Foundation (MCB-1733227).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DBS; Experimental Design: SEAG, PM, DBS; Data Generation: SEAG, LMLM, HTH; Writing—original draft preparation: DBS; Writing—review and editing: SEAG, PM.

Corresponding authors

Correspondence to Salah E. Abdel-Ghany or Daniel B. Sloan.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 661 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Ghany, S.E., LaManna, L.M., Harroun, H.T. et al. Rapid sequence evolution is associated with genetic incompatibilities in the plastid Clp complex. Plant Mol Biol 108, 277–287 (2022). https://doi.org/10.1007/s11103-022-01241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-022-01241-4

Keywords

Navigation