Skip to main content
Log in

The Chlamydomonas chloroplast clpP gene contains translated large insertion sequences and is essential for cell growth

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Sequence determination of the chloroplast clpP gene from two distantly related Chlamydomonas species (C. reinhardtii and C. eugametos) revealed the presence of translated large insertion sequences (IS1 and IS2) that divide the clpP gene into two or three sequence domains (SDs) and are not found in homologous genes in other organisms. These insertion sequences do not resemble RNA introns, and are not spliced out at the mRNA level. Instead, each insertion sequence forms a continuous open reading frame with its upstream and downstream sequence domains. IS1 specifies a potential polypeptide sequence of 286 and 318 amino acid residues in C. reinhardtii and C. eugametos, respectively. IS2 encodes a 456 amino acid polypeptide and is present only in C. eugametos. The two Chlamydomonas IS1 sequences show substantial similarity; however, there is no significant sequence similarity either between IS1 and IS2 or between these insertion sequences and any other known protein coding sequences. The C. reinhardtii clpP gene was further shown to be essential for cell growth, as demonstrated through targeted gene disruption by particle gun-mediated chloroplast transformation. Only heteroplasmic transformants could be obtained, even under mixotrophic growth conditions. The heteroplasmic transformants were stable only under selection pressure for the disrupted clpP, rapidly segregated into wild-type cells when the selection pressure was removed, and grew significantly more slowly than wildtype cells under phototrophic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boudreau E, Otis C, Turmel M (1994) Conserved gene clusters in the highly rearranged chloroplast genomes of Chlamydomonas moewusii and Chlamydomonas reinhardtii. Plant Mol Biol 24:585–602

    Google Scholar 

  • Boynton JE, Gillham NW (1993) Chloroplast transformation in Chlamydomonas. Methods Enzymol 217:510–536

    Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    Google Scholar 

  • Buchheim MA, Turmel M, Zimmer EA, Chapman RL (1990) Phylogeny of Chlamydomonas (Chlorophyta) based on cladistic analysis of nuclear 18S rRNA sequence data. J Phycol 26:689–699

    Google Scholar 

  • Cooper AA, Chen Y-J, Lindorfer MA, Stevens TH (1993) Protein splicing of the yeast TFP1 intervening protein sequence: a model for self-excision. EMBO J 12:2575–2583

    Google Scholar 

  • Davis EO, Jenner PJ, Brooks PC, Colston MJ, Sedgwick SG (1992) Protein splicing in the maturation of M. tuberculosis RecA protein: a mechanism for tolerating a novel class of intervening sequence. Cell 71:201–210

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Durocher V, Gauthier A, Bellemare G, Lemieux C (1989) An optional group I intron between the chloroplast small subunit rRNA genes of Chlamydomonas moewusii and C. eugametos. Curr Genet 15:277–282

    Google Scholar 

  • Fong SE, Surzycki SJ (1992) Organization and structure of plastome psbF psbL, petG and ORF712 genes in Chlamydomonas reinhardtii. Curr Genet 21:527–530

    Google Scholar 

  • Geuskens V, Mhammedi-Alaoui A, Desmet L, Toussaint A (1992) Virulence in bacteriophage Mu: a case of transdominant proteolysis by the E. coli Clp serine protease. EMBO J 13:5121–5127

    Google Scholar 

  • Goldberg AL (1992) The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem 203:9–23

    Google Scholar 

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res 19:4083–4089

    Google Scholar 

  • Gottesman S, Maurizi MR (1992) Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev 56:592–621

    Google Scholar 

  • Gottesman S, Squires C, Pichersky E, Carrington M, Hobbs M, Mattick JS, Dalrymple B, Kuramitsu H, Shiroza T, Foster T, Clarke WP, Ross B, Squires CL, Maurizi MR (1990) Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. Proc Natl Acad Sci USA 87:3513–3517

    Google Scholar 

  • Gray JC, Hird SM, Dyer TA (1990) Nucleotide sequence of a wheat chloroplast gene encoding the proteolytic subunit of an ATP-dependent protease. Plant Mol Biol 15:947–950

    Google Scholar 

  • Hallick RB, Buetow DE (1989) Chloroplast DNA. In: Buetow DE (ed) The biology of Euglena. Academic Press, San Diego, California, pp 352–414

    Google Scholar 

  • Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A, Stutz E (1993) Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res 21:3537–3544

    Google Scholar 

  • Harris EH (1989) The Chlamydomonas source book: A comprehensive guide to biology and laboratory use. Academic Press, San Diego

    Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct rRNA genes accounts for a major plastid DNA inversion during the evolution of cereals. Mol Gen Genet 217:185–194

    Google Scholar 

  • Huang C, Liu X-Q (1992) Nucleotide sequence of the frxC, petB, and trnL genes in the chloroplast genome of Chlamydomonas reinhardtii. Plant Mol Biol 18:985–988

    Google Scholar 

  • Johnson EM, Schnabelrauch LS, Sears BB (1991) A plastome mutation affects processing of both chloroplast and nuclear DNA-encoded plastid proteins. Mol Gen Genet 225:106–112

    Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232

    Google Scholar 

  • Kindle KL, Richards KL, Stern DB (1991) Engineering the chloroplast genome: Techniques and capabilities for chloroplast transformation in C. reinhardtii. Proc Natl Acad Sci USA 88:1721–1725

    Google Scholar 

  • Kroh HE, Simon LD (1991) The ClpP component of Clp protease is the σ32-dependent heat shock protein F21.5. J Bacteriol 172:6026–6034

    Google Scholar 

  • Lemieux C, Turmel M, Seligy VL, Lee RW (1985) The large subunit of ribulose-1,5-bisphosphate carboxylase-oxygenase is encoded in the inverted repeat sequence of the Chlamydomonas eugametos chloroplast genome. Curr Genet 9:139–145

    Google Scholar 

  • Leonhardt SA, Fearon K, Danese PN, Mason TL (1993) HSP78 encodes a yeast mitochondrial heat shock protein in the Clp family of ATP-dependent proteases. Mol Cell Biol 13:6304–6313

    Google Scholar 

  • Liu X-Q, Huang C, Xu H (1993a) The unusual rps3-like orf712 is functionally essential and structurally conserved in Chlamydomonas. FEBS Lett 336:225–230

    Google Scholar 

  • Liu X-Q, Xu H, Huang C (1993b) Chloroplast ch1B gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii. Plant Mot Biol 23:297–308

    Google Scholar 

  • Liu X-Q, Jagendorf AT (1984) ATP-dependent proteolysis in pea chloroplasts. FEBS Lett 166:248–253

    Google Scholar 

  • Liu X-Q, Gillham NW, Boynton JE (1989) Chloroplast ribosomal protein gene rps12 of Chlamydomonas reinhardtii: wild-type sequence, mutation to streptomycin resistance and dependence, and function in Escherichia coli. J Biol Chem 264:16100–16108

    Google Scholar 

  • Malek L, Bogorad L, Ayers AR, Goldberg AL (1984) Newly synthesized proteins are degraded by ATP-stimulated proteolytic process in isolated pea chloroplasts. FEBS Lett 166:253–257

    Google Scholar 

  • Maurizi MR, Clarke WP, Katayama Y, Rudikoff S, Pumphrey J, Bowers B, Gottesman S (1990a) Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 265:12536–12545

    Google Scholar 

  • Maurizi MR, Clark WP, Kim S-H, Gottesman S (1990b) CIpP represents a unique family of serine proteases. J Biol Chem 265:12546–12552

    Google Scholar 

  • Moore T, Keegstra K (1993) Characterization of a cDNA clone encoding a chloroplast-targeted Clp homologue. Plant Mol Biol 21:525–537

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota A, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Google Scholar 

  • Parsell DA, Sanchez Y, Stitzel JD, Lindquist S (1991) Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature 353:270–273

    Google Scholar 

  • Perler FB, Comb DG, Jack WE, Moran LS, Qiang B, Kucera RB, Benner J, Slatko BE, Nwankwo DO, Hempstead SK, Carlow CKS, Jannasch H (1992) Intervening sequences in an Archaea DNA polymerase gene. Proc Natl Acad Sci USA 89:5577–5581

    Google Scholar 

  • Reith M, Munholland J (1993) A high resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5:465–475

    Google Scholar 

  • Sakamoto W Kindle KL, Stern DB (1993) In vivo analysis of Chlamydomonas chloroplast petD gene expression using stable transformation of beta-glucuronidase translational fusions. Proc Natl Acad Sci USA 90:497–501

    Google Scholar 

  • Shapiro JA (1993) A role for the Clp protease in activating Mumediated DNA rearrangements. J Bacteriol 175:2625–2631

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    Google Scholar 

  • Shub DA, Goodrich-Blair H (1992) Protein introns: a new home for endonucleases. Cell 71:183–186

    Google Scholar 

  • Simard C, Lemieux C, Bellemare G (1988) Cloning and sequencing of cDNA encoding the small subunit precursor of ribulose1,5-bisphosphate carboxylase from Chlamydomonas moewusii. Curr Genet 14:461–470

    Google Scholar 

  • Squires C, Squires CL (1992) The Clp proteins: proteolysis regulators or molecular chaperones? J Bacteriol 174:1081–1085

    Google Scholar 

  • Takahashi Y, Goldschmidt-Clermont M, Soen S-Y, Franzén LG, Rochaix J-D (1991) Directed chloroplast transformation in Chlamydomonas reinhardtii: insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes photosystem I. EMBO J 10:2033–2040

    Google Scholar 

  • Turmel M, Bellemare G, Lemieux C (1987) Physical mapping of differences between the chloroplast DNAs of the interfertile Chlamydomonas eugametos and Chlamydomonas moewusii. Curr Genet 11:543–552

    Google Scholar 

  • Turmel M, Lemieux B, Lemieux C (1988) The chloroplast genome of the green alga Chlamydomonas moewusii: Localization of protein-coding genes and transcriptionally active regions. Mol Gen Genet 214:412–419

    Google Scholar 

  • Turmel M, Boulanger J, Lemieux C (1989) Two group I introns with long open reading frames in the chloroplast psbA gene of Chlamydomonas moewusii. Nucleic Acids Res 17:3875–3887

    Google Scholar 

  • Turmel M, Gutell RR, Mercier J-P, Otis C, Lemieux C (1993a) Analysis of the chloroplast large subunit ribosomal RNA gene from 17 Chlamydomonas taxa. J Mol Biol 232:446–467

    Google Scholar 

  • Turmel M, Mercier J-P, Czté M-J (1993b) Group I introns interrupt the chloroplast psaB and psbC and the mitochondrial rrnL gene in Chlamydomonas. Nucleic Acids Res 21:5242–5250

    Google Scholar 

  • Wallace CJA (1993) The curious case of protein splicing: mechanistic insights suggested by protein semisynthesis. Protein Sci 2:697–705

    Google Scholar 

  • Wang S, Liu X-Q (1991) The plastic genome of Cryptomonas encodes an hsp70-like protein, a histone-like protein, and an acyl carrier protein. Proc Natl Acad Sci USA 88:10783–10787

    Google Scholar 

  • Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652

    Google Scholar 

  • Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H+-adenosine triphosphatase. Science 250:651–657

    Google Scholar 

  • Yang RCA, Dove M, Seligy VL, Lemieux C, Turmel M, Narang SA (1986) Complete nucleotide sequence and mRNA-mapping of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Chlamydomonas moewusii. Gene 50:250–270

    Google Scholar 

  • Zhang D, Spreitzer RJ (1989) Nucleotide sequence of the Chlamydomonas reinhardtii chloroplast genes for tryptophan and glycine transfer RNAs. Nucleic Acids Res 17:8873

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Herrmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Wang, S., Chen, L. et al. The Chlamydomonas chloroplast clpP gene contains translated large insertion sequences and is essential for cell growth. Molec. Gen. Genet. 244, 151–159 (1994). https://doi.org/10.1007/BF00283516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00283516

Key words

Navigation