Skip to main content
Log in

Relative importance of branching enzyme isoforms in determining starch fine structure and physicochemical properties of indica rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Down-regulation of starch branching enzymes alters fine structure and starch properties, especially the B-type crystalline pattern and extremely high amylose content identified in the BEIIb-deficiency mutant in the indica rice.

Abstract

The relative importance of the starch branching enzymes in determining the molecular fine structure and starch functional properties were uncovered in this study. An indica rice, Guangluai 4 with high amylose content (AC) and high gelatinization temperature (GT) was used to generate the clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein-9 (Cas9) knockout lines. Five mutant lines were identified including be1-1, be1-2, be2a-1, be2a-2 and be2b-1, and analysis of western blot showed the CRISPR/Cas9 system was successful in inducing mutations in the targeted genes. AC of be2b-1 (34.1%) was greater than that of wild type (WT) (27.4%) and other mutants. Mutations of either BEI or BEIIa did not alter the starch crystallite pattern (A-type). The BEIIb deficiency caused an opaque endosperm phenotype, changed the crystallite pattern from A- to B-type, and dramatically increased the degree of ordered structure, the relative proportion of amylose chains and intermediate to long amylopectin chains, average chain length of amylopectin molecules as well as GT. The BEIIa deficiency had no effect on the proportion of amylose chains, the length of amylopectin intermediate-long chains, conclusion temperature and enthalpy of gelatinization. Down-regulation of BEI increased the proportion of shortest amylopectin chains (fa) but decreased the proportion of long amylopectin chains (fb2 and fb3), leading to a lower GT. It is concluded that the relative importance in determining starch fine structures and functionality was in the order of BEIIb > BEI > BEIIa. Our results provide new information for utilizations of BE-deficient mutants in rice quality breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe N, Asai H, Yago H, Oitome NF, Itoh R, Crofts N, Nakamura Y, Fujita N (2014) Relationships between starch synthase I and branching enzyme isozymes determined using double mutant rice lines. BMC Plant Biol 14:80–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed Z, Tetlow IJ, Ahmed R, Morell MK, Emes MJ (2015) Protein–protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of a and b granules. Plant Sci 233:95–106

    Article  CAS  PubMed  Google Scholar 

  • Asai H, Abe N, Matsushima R, Crofts N, Oitome NF, Nakamura Y, Fujita N (2014) Deficiencies in both starch synthase IIIa and branching enzyme IIb lead to a significant increase in amylose in SSIIa-inactive japonica rice seeds. J Exp Bot 65(18):5497–5507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33(2):120–131

    Article  CAS  PubMed  Google Scholar 

  • Baysal C, Bortesi L, Zhu C, Farré G, Schillberg S, Christou P (2016) CRISPR/Cas9 activity in the rice OSBEIIb gene does not induce off-target effects in the closely related paralog osbeiia. Mol Breed 36(8):108

    Article  Google Scholar 

  • Baysal C, He W, Drapal M, Villorbina G, Medina V, Capell T, Khush GS, Zhu C, Fraser PD, Christou P (2020) Inactivation of rice starch branching enzyme IIb triggers broad and unexpected changes in metabolism by transcriptional reprogramming. Proc Natl Acad Sci USA 117(42):26503–26512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • Buccitelli C, Selbach M (2020) Mrnas, proteins and the emerging principles of gene expression control. Nat Rev Genet 21(10):630–644

    Article  CAS  PubMed  Google Scholar 

  • Butardo VM, Fitzgerald MA, Bird AR, Gidley MJ, Flanagan BM, Larroque O, Resurreccion AP, Laidlaw HKC, Jobling SA, Morell MK et al (2011) Impact of down-regulation of starch branching enzyme IIb in rice by artificial microrna- and hairpin RNA-mediated RNA silencing. J Exp Bot 62(14):4927–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai J, Man J, Huang J, Liu Q, Wei W, Wei C (2015) Relationship between structure and functional properties of normal rice starches with different amylose contents. Carbohydr Polym 125:35–44

    Article  CAS  PubMed  Google Scholar 

  • Crofts N, Abe K, Aihara S, Itoh R, Nakamura Y, Itoh K, Fujita N (2012) Lack of starch synthase IIIa and high expression of granule-bound starch synthase I synergistically increase the apparent amylose content in rice endosperm. Plant Sci 193-194:62–69

    Article  CAS  PubMed  Google Scholar 

  • Crofts N, Abe N, Oitome NF, Matsushima R, Hayashi M, Tetlow IJ, Emes MJ, Nakamura Y, Fujita N (2015) Amylopectin biosynthetic enzymes from developing rice seed form enzymatically active protein complexes. J Exp Bot 66(15):4469–4482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts N, Nakamura Y, Fujita N (2017) Critical and speculative review of the roles of multi-protein complexes in starch biosynthesis in cereals. Plant Sci 262:1–8

    Article  CAS  PubMed  Google Scholar 

  • Doyle J (1991) DNA protocols for plants. In: Hewitt GM, Johnston AWB, Young JPW (eds) Molecular techniques in taxonomy. Springer Berlin Heidelberg, Berlin, pp 283–293

    Chapter  Google Scholar 

  • Frost K, Kaminski D, Kirwan G, Lascaris E, Shanks R (2009) Crystallinity and structure of starch using wide angle x-ray scattering. Carbohyd Polym 78(3):543–548

    Article  CAS  Google Scholar 

  • Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiol 140(3):1070–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goren A, Ashlock D, Tetlow IJ (2018) Starch formation inside plastids of higher plants. Protoplasma 255(6):1855–1876

    Article  CAS  PubMed  Google Scholar 

  • Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mrna expression levels on a genomic scale. Genome Biol 4(9):117

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirose T, Terao T (2004) A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). Planta 220(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Imberty A, Chanzy H, Pérez S, Bulèon A, Tran V (1988) The double-helical nature of the crystalline part of A-starch. J Mol Biol 201(2):365–378

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Crofts N, Abe M, Hosaka Y, Fujita N (2017) Characterization of the endosperm starch and the pleiotropic effects of biosynthetic enzymes on their properties in novel mutant rice lines with high resistant starch and amylose content. Plant Sci 258:52–60

    Article  CAS  PubMed  Google Scholar 

  • Kang H-J, Hwang I-K, Kim K-S, Choi H-C (2003) Comparative structure and physicochemical properties of Ilpumbyeo, a high-quality japonica rice, and its mutant, Suweon 464. J Agric Food Chem 51(22):6598–6603

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Choi SH, Park BS, Song JT, Kim MC, Koh HJ, Seo HS (2009) Proteomic analysis of the rice seed for quality improvement. Plant Breed 128(6):541–550

    Article  CAS  Google Scholar 

  • Kong X, Sun X, Xu F, Umemoto T, Chen H, Bao J (2014) Morphological and physicochemical properties of two starch mutants induced from a high amylose indica rice by gamma irradiation. Stark 66(1-2):157–165

    Article  CAS  Google Scholar 

  • Kubo A, Fujita N, Harada K, Matsuda T, Satoh H, Nakamura Y (1999) The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant physiol 121(2):399–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo A, Akdogan G, Nakaya M, Shojo A, Suzuki S, Satoh H, Kitamura S (2010) Structure, physical, and digestive properties of starch from wx ae double-mutant rice. J Agric Food Chem 58(7):4463–4469

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen Z, Hu M, Wang Z, Hua H, Yin C, Zeng H (2011) Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling. Plant Cell Rep 30(9):1641–1659

    Article  CAS  PubMed  Google Scholar 

  • Li E, Wu AC, Li J, Liu Q, Gilbert RG (2015) Improved understanding of rice amylose biosynthesis from advanced starch structural characterization. Rice 8(1):20

    Article  PubMed Central  Google Scholar 

  • Lin L, Guo D, Zhao L, Zhang X, Wang J, Zhang F, Wei C (2016) Comparative structure of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocoll 52:19–28

    Article  CAS  Google Scholar 

  • Lin L, Huang J, Zhang L, Zhang C, Liu Q, Wei C (2019) Effects of inhibiting starch branching enzymes on molecular and crystalline structures of starches from endosperm different regions in rice. Food Chem 301:125271

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2 – ∆∆ct method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • Miura S, Koyama N, Crofts N, Hosaka Y, Abe M, Fujita N (2021) Generation and starch characterization of non-transgenic bei and beiib double mutant rice (Oryza sativa) with ultra-high level of resistant starch. Rice 14(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizuno K, Kobayashi E, Tachibana M, Kawasaki T, Fujimura T, Funane K, Kobayashi M, Baba T (2001) Characterization of an isoform of rice starch branching enzyme, RBE4, in developingseeds. Plant Cell Physiol 42(4):349–357

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y (2002) Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: Rice endosperm as a model tissue. Plant Cell Physiol 43(7):718–725

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Takeichi T, Kawaguchi K, Yamanouchi H (1992) Purification of two forms of starch branching enzyme (Q-enzyme) from developing rice endosperm. Physiol Plant 84(3):329–335

    Article  CAS  Google Scholar 

  • Nakamura Y, Umemoto T, Ogata N, Kuboki Y, Yano M, Sasaki T (1996) Starch debranching enzyme (R-enzyme or pullulanase) from developing rice endosperm: Purification, cDNA and chromosomal localization of the gene. Planta 199(2):209–218

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Francisco PB, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N (2005) Essential amino acids of starch synthase iia differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol 58(2):213–227

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Utsumi Y, Sawada T, Aihara S, Utsumi C, Yoshida M, Kitamura S (2010) Characterization of the reactions of starch branching enzymes from rice endosperm. Plant Cell Physiol 51(5):776–794

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Ono M, Hatta T, Kainuma K, Yashiro K, Matsuba G, Matsubara A, Miyazato A, Mizutani G (2020) Effects of BEIIB-deficiency on the cluster structure of amylopectin and the internal structure of starch granules in endosperm and culm of japonica-type rice. Front Plant Sci 11:571346–571346

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant physiol 127(2):459–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura A, Aichi I, Matsuoka M (2006) A protocol for agrobacterium-mediated transformation in rice. Nat Protoc 1(6):2796–2802

    Article  CAS  PubMed  Google Scholar 

  • Ohdan T, Francisco PB Jr., Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56(422):3229–3244

    Article  CAS  PubMed  Google Scholar 

  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) Imagej2: Imagej for the next generation of scientific image data. BMC Bioinform 18(1):529–529

    Article  Google Scholar 

  • Salsman J, Dellaire G (2016) Precision genome editing in the crispr era. Biochem Cell Biol 95(2):187–201

    Article  PubMed  Google Scholar 

  • Satoh H, Nishi A, Fujita N, Kubo A, Nakamura Y, Kawasaki T, Okita TW (2003a) Isolation and characterization of starch mutants in rice. J Appl Glycosci 50(2):225–230

    Article  CAS  Google Scholar 

  • Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, Nakamura Y (2003b) Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol 133(3):1111–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang S-K, Okita TW, Kaneko N, Fujita N, Yoshida M et al (2008) Mutation of the plastidial α-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20(7):1833–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawada T, Itoh M, Nakamura Y (2018) Contributions of three starch branching enzyme isozymes to the fine structure of amylopectin in rice endosperm. Front Plant Sci 9:1536–1536

    Article  PubMed  PubMed Central  Google Scholar 

  • Sevenou O, Hill SE, Farhat IA, Mitchell JR (2002) Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int J Biol Macromol 31(1):79–85

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y et al (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Fujita N (2017) Thermal and rheological characteristics of mutant rice starches with widespread variation of amylose content and amylopectin structure. Food Hydrocoll 62:83–93

    Article  CAS  Google Scholar 

  • Tanaka N, Fujita N, Nishi A, Satoh H, Hosaka Y, Ugaki M, Kawasaki S, Nakamura Y (2004) The structure of starch can be manipulated by changing the expression levels of starch branching enzyme IIb in rice endosperm. Plant Biotechnol J 2(6):507–516

    Article  CAS  PubMed  Google Scholar 

  • Umemoto T, Yano M, Satoh H, Shomura A, Nakamura Y (2002) Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor Appl Genet 104(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Vilaplana F, Hasjim J, Gilbert RG (2012) Amylose content in starches: toward optimal definition and validating experimental methods. Carbohydr Polym 88(1):103–111

    Article  CAS  Google Scholar 

  • Wang J-C, Xu H, Zhu Y, Liu Q-Q, Cai X-L (2013) Osbzip58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J Exp Bot 64(11):3453–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Hasjim J, Wu AC, Henry RJ, Gilbert RG (2014) Variation in amylose fine structure of starches from different botanical sources. J Agric Food Chem 62(19):4443–4453

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Xu B, Qin F, Yu H, Chen C, Meng X, Zhu L, Wang Y, Gu M, Liu Q (2010) C-type starch from high-amylose rice resistant starch granules modified by antisense rna inhibition of starch branching enzyme. J Agric Food Chem 58(12):7383–7388

    Article  CAS  PubMed  Google Scholar 

  • Wu AC, Li E, Gilbert RG (2014) Exploring extraction/dissolution procedures for analysis of starch chain-length distributions. Carbohyd Polym 114:36–42

    Article  CAS  Google Scholar 

  • Yamanouchi H, Nakamura Y (1992) Organ specificity of isoforms of starch branching enzyme (Q-enzyme) in rice. Plant Cell Physiol 33(7):985–991

    CAS  Google Scholar 

  • Zhang H, Xu H, Feng M, Zhu Y (2018) Suppression of OSMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Plant Biotechnol J 16(1):18–26

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li E, Fan X, Yang C, Ma H, Gilbert RG (2020) The effects of the chain-length distributions of starch molecules on rheological and thermal properties of wheat flour paste. Food Hydrocoll 101:105563

    Article  CAS  Google Scholar 

  • Zhang Z, Fan X, Ma H, Li C, Li E, Gilbert RG (2021) Characterization of the baking-induced changes in starch molecular and crystalline structures in sugar-snap cookies. Carbohydr Polym 256:117518

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Gu M, Meng X, Cheung SCK, Yu H, Huang J, Sun Y, Shi Y, Liu Q (2012) High-amylose rice improves indices of animal health in normal and diabetic rats. Plant Biotechnol J 10(3):353–362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2016YFD0400104), the Natural Science Foundation of China (31871531), and Zhejiang Province (LZ21C130003) (for J.B.), and the Postdoctoral International Exchange Program (for P.T.). We sincerely thank Dr. Xin Zhou, Miss Ruihan Qiu and Xiaoyu Chen for their help in genotyping.

Author information

Authors and Affiliations

Authors

Contributions

PT, YH, JZ and JZ performed mRNA and protein analyses; YH, JZ and YY performed DNA genotyping; YH and ZZ performed the analyses of starch; FX designed the gRNA and obtained the mutants; PT, ZZ and JB wrote the article; and all authors read and approved the final manuscript.

Corresponding authors

Correspondence to Feifei Xu or Jinsong Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Molecular Regulation of Starch Metabolism.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 277.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tappiban, P., Hu, Y., Deng, J. et al. Relative importance of branching enzyme isoforms in determining starch fine structure and physicochemical properties of indica rice. Plant Mol Biol 108, 399–412 (2022). https://doi.org/10.1007/s11103-021-01207-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01207-y

Keywords

Navigation