Skip to main content
Log in

CBM20CP, a novel functional protein of starch metabolism in green algae

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Ostreococcus tauri is a picoalga that contains a small and compact genome, which resembles that of higher plants in the multiplicity of enzymes involved in starch synthesis (ADP-glucose pyrophosphorylase, ADPGlc PPase; granule bound starch synthase, GBSS; starch synthases, SSI, SSII, SSIII; and starch branching enzyme, SBE, between others), except starch synthase IV (SSIV). Although its genome is fully sequenced, there are still many genes and proteins to which no function was assigned. Here, we identify the OT_ostta06g01880 gene that encodes CBM20CP, a plastidial protein which contains a central carbohydrate binding domain of the CBM20 family, and a coiled coil domain at the C-terminus that lacks catalytic activity. We demonstrate that CBM20CP has the ability to bind starch, amylose and amylopectin with different affinities. Furthermore, this protein interacts with OsttaSSIII-B, increasing its binding to starch granules, its catalytic efficiency and promoting granule growth. The results allow us to postulate a functional role for CBM20CP in starch metabolism in green algae.

Key message

CBM20CP, a plastidial protein that has a modular structure but lacks catalytic activity, regulates the synthesis of starch in Ostreococcus tauri.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barchiesi J, Hedin N, Gomez-Casati DF, Ballicora MA, Busi MV (2015) Functional demonstrations of starch binding domains present in Ostreococcus tauri starch synthases isoforms. BMC Res Notes 8:613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barchiesi J, Hedin N, Iglesias AA, Gomez-Casati DF, Ballicora MA, Busi MV (2017) Identification of a novel starch synthase III from the picoalgae Ostreococcus tauri. Biochimie 133:37–44

    Article  CAS  PubMed  Google Scholar 

  • Barchiesi J, Velazquez MB, Palopoli N, Iglesias AA, Gomez-Casati DF, Ballicora MA, Busi MV (2018) Starch synthesis in Ostreococcus tauri: the starch-binding domains of starch synthase III-b are essential for catalytic activity. Front Plant Sci 9:1541

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanc-Mathieu R, Verhelst B, Derelle E, Rombauts S, Bouget FY, Carre I, Chateau A, Eyre-Walker A, Grimsley N, Moreau H, Piegu B, Rivals E, Schackwitz W, Van de Peer Y, Piganeau G (2014) An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies. BMC Genomics 15:1103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bollag DME, Rozycki MD, Edelstein SJ (1996) Protein methods, 2nd edn. Wiley, New York

    Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bott R, Saldajeno M, Cuevas W, Ward D, Scheffers M, Aehle W, Karkehabadi S, Sandgren M, Hansson H (2008) Three-dimensional structure of an intact glycoside hydrolase family 15 glucoamylase from Hypocrea jecorina. Biochemistry 47:5746–5754

    Article  CAS  PubMed  Google Scholar 

  • Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170

    Article  CAS  PubMed  Google Scholar 

  • Buchan DWA, Jones DT (2019) The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res 47:W402–W407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  Google Scholar 

  • Christiansen C, Abou Hachem M, Janecek S, Vikso-Nielsen A, Blennow A, Svensson B (2009) The carbohydrate-binding module family 20–diversity, structure, and function. FEBS J 276:5006–5029

    Article  CAS  PubMed  Google Scholar 

  • Cockburn DW, Suh C, Medina KP, Duvall RM, Wawrzak Z, Henrissat B, Koropatkin NM (2018) Novel carbohydrate binding modules in the surface anchored alpha-amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut. Mol Microbiol 107:249–264

    Article  CAS  PubMed  Google Scholar 

  • Coutinho PM, Reilly PJ (1997) Glucoamylase structural, functional, and evolutionary relationships. Proteins 29:334–347

    Article  CAS  PubMed  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deschamps P, Moreau H, Worden AZ, Dauvillee D, Ball SG (2008) Early gene duplication within chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts. Genetics 178:2373–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giardina T, Gunning AP, Juge N, Faulds CB, Furniss CS, Svensson B, Morris VJ, Williamson G (2001) Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. J Mol Biol 313:1149–1159

    Article  CAS  PubMed  Google Scholar 

  • Gibson RP, Turkenburg JP, Charnock SJ, Lloyd R, Davies GJ (2002) Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem Biol 9:1337–1346

    Article  CAS  PubMed  Google Scholar 

  • Gilkes NR, Warren RA, Miller RC Jr, Kilburn DG (1988) Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J Biol Chem 263:10401–10407

    Article  CAS  PubMed  Google Scholar 

  • Giuliani SE, Frank AM, Collart FR (2008) Functional assignment of solute-binding proteins of ABC transporters using a fluorescence-based thermal shift assay. Biochemistry 47:13974–13984

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Casati DF, Martin M, Busi MV (2013) Polysaccharide-synthesizing glycosyltransferases and carbohydrate binding modules: the case of starch synthase III. Protein Pept Lett 20:856–863

    Article  CAS  PubMed  Google Scholar 

  • Gomez Casati DF, Sesma JI, Iglesias AA (2000) Structural and kinetic characterization of NADP-dependent, non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from celery leaves. Plant Sci 154:107–115

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Liu Y, Li X, Yan Z, Xie Y, Xiong H, Zhao L, Gu J, Zhao S, Liu L (2017) Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat. BMC Genomics 18:358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hebelstrup KH, Sagnelli D, Blennow A (2015) The future of starch bioengineering: GM microorganisms or GM plants? Front Plant Sci 6:247

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedin N, Barchiesi J, Gomez-Casati DF, Iglesias AA, Ballicora MA, Busi MV (2017) Identification and characterization of a novel starch branching enzyme from the picoalgae Ostreococcus tauri. Arch Biochem Biophys 618:52–61

    Article  CAS  PubMed  Google Scholar 

  • Janecek S, Marecek F, MacGregor EA, Svensson B (2019) Starch-binding domains as CBM families-history, occurrence, structure, function and evolution. Biotechnol Adv 37:107451

    Article  CAS  PubMed  Google Scholar 

  • Janecek S, Svensson B, MacGregor EA (2011) Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb Technol 49:429–440

    Article  CAS  PubMed  Google Scholar 

  • Kaneko A, Sudo S, Takayasu-Sakamoto Y, Tamura G, Ishikawa T, Oba T (1996) Molecular cloning and determination of the nucleotide sequence of a gene encoding an acid-stable α-amylase from Aspergillus kawachii. J Ferment Bioeng 81:292–298

    Article  CAS  Google Scholar 

  • Kerk D, Conley TR, Rodriguez FA, Tran HT, Nimick M, Muench DG, Moorhead GB (2006) A chloroplast-localized dual-specificity protein phosphatase in Arabidopsis contains a phylogenetically dispersed and ancient carbohydrate-binding domain, which binds the polysaccharide starch. Plant J 46:400–413

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein C, Schulz GE (1991) Structure of cyclodextrin glycosyltransferase refined at 2.0 Å resolution. J Mol Biol 217:737–750

    Article  CAS  PubMed  Google Scholar 

  • Koropatkin NM, Smith TJ (2010) SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules. Structure 18:200–215

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lawson CL, van Montfort R, Strokopytov B, Rozeboom HJ, Kalk KH, de Vries GE, Penninga D, Dijkhuizen L, Dijkstra BW (1994) Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J Mol Biol 236:590–600

    Article  CAS  PubMed  Google Scholar 

  • Layton CJ, Hellinga HW (2011) Quantitation of protein-protein interactions by thermal stability shift analysis. Protein Sci 20:1439–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupas AN, Bassler J, Dunin-Horkawicz S (2017) The structure and topology of alpha-helical coiled coils. Subcell Biochem 82:95–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupas AN, Gruber M (2005) The structure of alpha-helical coiled coils. Adv Protein Chem 70:37–78

    Article  CAS  PubMed  Google Scholar 

  • Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  CAS  PubMed  Google Scholar 

  • Machovic M, Janecek S (2006a) The evolution of putative starch-binding domains. FEBS Lett 580:6349–6356

    Article  CAS  PubMed  Google Scholar 

  • Machovic M, Janecek S (2006b) Starch-binding domains in the post-genome era. Cell Mol Life Sci 63:2710–2724

    Article  CAS  PubMed  Google Scholar 

  • Machovic M, Svensson B, MacGregor EA, Janecek S (2005) A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21. FEBS J 272:5497–5513

    Article  CAS  PubMed  Google Scholar 

  • Maiti R, Van Domselaar GH, Zhang H, Wishart DS (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res 32:W590–W594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maliandi MV, Busi MV, Clemente M, Zabaleta EJ, Araya A, Gomez-Casati DF (2007) Expression and one-step purification of recombinant Arabidopsis thaliana frataxin homolog (AtFH). Protein Expr Purif 51:157–161

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R, Utsumi S (1999) Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose. Biochemistry 38:7050–7061

    Article  CAS  PubMed  Google Scholar 

  • Nanmori T, Nagai M, Shimizu Y, Shinke R, Mikami B (1993) Cloning of the beta-amylase gene from Bacillus cereus and characteristics of the primary structure of the enzyme. Appl Environ Microbiol 59:623–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazarian-Firouzabadi F, Visser RGF (2017) Potato starch synthases: functions and relationships. Biochem Biophys Rep 10:7–16

    PubMed  PubMed Central  Google Scholar 

  • Oyama T, Kusunoki M, Kishimoto Y, Takasaki Y, Nitta Y (1999) Crystal structure of βAmylase from Bacillus cereus var. mycoides at 2.2 Å resolution. J Biochem 125:1120–1130

    Article  CAS  PubMed  Google Scholar 

  • Palenik B, Grimwood J, Aerts A, Rouze P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, Zhou K, Otillar R, Merchant SS, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O, Piganeau G, Jancek S, Heijde M, Jabbari K, Bowler C, Lohr M, Robbens S, Werner G, Dubchak I, Pazour GJ, Ren Q, Paulsen I, Delwiche C, Schmutz J, Rokhsar D, Van de Peer Y, Moreau H, Grigoriev IV (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104:7705–7710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palopoli N, Busi MV, Fornasari MS, Gomez-Casati D, Ugalde R, Parisi G (2006) Starch-synthase III family encodes a tandem of three starch-binding domains. Proteins 65:27–31

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Zheng Y, Chen M, Wang Y, Xiao Y, Gao Y (2014) A starch-binding domain identified in alpha-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch. FEBS Lett 588:1161–1167

    Article  CAS  PubMed  Google Scholar 

  • Penninga D, van der Veen BA, Knegtel RM, van Hijum SA, Rozeboom HJ, Kalk KH, Dijkstra BW, Dijkhuizen L (1996) The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J Biol Chem 271:32777–32784

    Article  CAS  PubMed  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pons JL, Labesse G (2009) @TOME-2: a new pipeline for comparative modeling of protein-ligand complexes. Nucleic Acids Res 37:W485–W491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preiss J, Ball K, Smith-White B, Iglesias A, Kakefuda G, Li L (1991) Starch biosynthesis and its regulation. Biochem Soc Trans 19:539–547

    Article  CAS  PubMed  Google Scholar 

  • Ral JP, Derelle E, Ferraz C, Wattebled F, Farinas B, Corellou F, Buleon A, Slomianny MC, Delvalle D, d’Hulst C, Rombauts S, Moreau H, Ball S (2004) Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri. Plant Physiol 136:3333–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Sanoja R, Oviedo N, Sanchez S (2005) Microbial starch-binding domain. Curr Opin Microbiol 8:260–267

    Article  CAS  PubMed  Google Scholar 

  • Roldan I, Wattebled F, Mercedes Lucas M, Delvalle D, Planchot V, Jimenez S, Perez R, Ball S, D’Hulst C, Merida A (2007) The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J 49:492–504

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, Harrison M, Roepstorff P, Svensson B: Glucoamylase: structure/function relationships, and protein engineering. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1543: 275–293 (2000).

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Seung D, Boudet J, Monroe J, Schreier TB, David LC, Abt M, Lu KJ, Zanella M, Zeeman SC (2017) Homologs of protein targeting to starch control starch granule initiation in arabidopsis leaves. Plant Cell 29:1657–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seung D, Schreier TB, Burgy L, Eicke S, Zeeman SC (2018) Two plastidial coiled-coil proteins are essential for normal starch granule initiation in Arabidopsis. Plant Cell 30:1523–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seung D, Soyk S, Coiro M, Maier BA, Eicke S, Zeeman SC (2015) PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis. PLoS Biol 13:e1002080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362

    Article  CAS  PubMed  Google Scholar 

  • Smith BW, Roe JH (1949) A photometric method for the determination of alpha-amylase in blood and urine, with use of the starch-iodine color. J Biol Chem 179:53–59

    Article  CAS  PubMed  Google Scholar 

  • Sorimachi K, Le Gal-Coeffet MF, Williamson G, Archer DB, Williamson MP (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure 5:647–661

    Article  CAS  PubMed  Google Scholar 

  • Sorokina O, Corellou F, Dauvillee D, Sorokin A, Goryanin I, Ball S, Bouget FY, Millar AJ (2011) Microarray data can predict diurnal changes of starch content in the picoalga Ostreococcus. BMC Syst Biol 5:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Streb S, Zeeman SC (2012) Starch metabolism in Arabidopsis. Arabidopsis Book 10:10160

    Article  Google Scholar 

  • Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugiere S, Hippler M, Ferro M, Bruley C, Peltier G, Vallon O, Cournac L (2012) PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol 29:3625–3639

    Article  CAS  PubMed  Google Scholar 

  • Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22:158–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truebestein L, Leonard TA (2016) Coiled-coils: the long and short of it. BioEssays 38:903–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turowski VR, Aknin C, Maliandi MV, Buchensky C, Leaden L, Peralta DA, Busi MV, Araya A, Gomez-Casati DF (2015) Frataxin is localized to both the chloroplast and mitochondrion and is involved in chloroplast Fe-S protein function in Arabidopsis. PLoS ONE e0:10141443

    Google Scholar 

  • Uitdehaag JC, van der Veen BA, Dijkhuizen L, Dijkstra BW (2002) Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the α-amylase family. Enzyme Microb Technol 30:295–304

    Article  CAS  Google Scholar 

  • Valdez HA, Busi MV, Wayllace NZ, Parisi G, Ugalde RA, Gomez-Casati DF (2008) Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana†. Biochemistry 47:3026–3032

    Article  CAS  PubMed  Google Scholar 

  • Valdez HA, Peralta DA, Wayllace NZ, Grisolía MJ, Gomez-Casati DF, Busi MV (2011) Preferential binding of SBD from Arabidopsis thaliana SSIII to polysaccharides: Study of amino acid residues involved. Starch Stärke 63:451–460

    Article  CAS  Google Scholar 

  • van Zundert GCP, Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin A (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725

    Article  PubMed  CAS  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  • Wind RD, Liebl W, Buitelaar RM, Penninga D, Spreinat A, Dijkhuizen L, Bahl H (1995) Cyclodextrin formation by the thermostable alpha-amylase of Thermoanaerobacterium thermosulfurigenes EM1 and reclassification of the enzyme as a cyclodextrin glycosyltransferase. Appl Environ Microbiol 61:1257–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Matsumoto Y, Shirakawa M, Kibe M, Hibino T, Kozaki S, Takasaki Y, Nitta Y (1996) Cloning, sequencing, and expression of a beta-amylase gene from Bacillus cereus var. mycoides and characterization of its products. Biosci Biotechnol Biochem 60:1255–9

    Article  CAS  PubMed  Google Scholar 

  • Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Olivier Vallon (Institut de Biologie Physico-Chimique CNRS/Sorbonne Université, Paris, France), Dr. Marianne Tardif (Atomic Energy and Alternative Energies Commission, Gif-sur-Yvette, France) and Dr. Laurent Cournac (Institute of Research for Development, Marseille, France) for their prompt support with PredAlgo tool. NH was a postdoctoral fellow from CONICET and MBV is a doctoral fellow from the same institution. JB, DFGC and MVB are research scientists from CONICET. This work was supported in part by grants from ANPCyT (PICT 2018 01440 to MVB).

Author information

Authors and Affiliations

Authors

Contributions

JB, DFGC, MVB conceived, designed and analyzed the experiments. NH, MBV performed the experiments and analyzed the results. JB, DFGC and MVB wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Maria V. Busi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedin, N., Velazquez, M.B., Barchiesi, J. et al. CBM20CP, a novel functional protein of starch metabolism in green algae. Plant Mol Biol 108, 363–378 (2022). https://doi.org/10.1007/s11103-021-01190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01190-4

Keywords

Navigation