Skip to main content

The Transition from Glycogen to Starch Metabolism in Cyanobacteria and Eukaryotes

  • Chapter
Starch

Abstract

α-1,4-linked glucan chains branched through α-1,6 glucosidic lineages define the most frequently found storage polysaccharides in living cells. These glucans come in two very distinct forms known as glycogen and starch. The small water-soluble glycogen particles distribute widely in Archaea, Bacteria, and heterotrophic eukaryotes, while semicrystalline solid starch seems to be restricted to photosynthetic eukaryotes. This review focusses on the so-called glycosyl-nucleotide-dependent pathway of starch and glycogen synthesis. Through comparative biochemistry of storage polysaccharide metabolism in distinct clades, we will review the evidence sustaining that starch has evolved from preexisting glycogen metabolism several times during the evolution of photosynthetic eukaryotes and cyanobacteria. This review will also describe the possible function of storage polysaccharide metabolism in establishing metabolic symbiosis during plastid endosymbiosis. We will detail the evidence sustaining that storage polysaccharide metabolism was used by three distinct organisms to establish a tripartite symbiosis that facilitated metabolic integration of free-living cyanobacteria into evolving organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht T, Haebel S, Koch A et al (2004) Yeast glycogenin (Glg2p) produced in Escherichia coli is simultaneously glucosylated at two vicinal tyrosine residues but results in a reduced bacterial glycogen accumulation. Eur J Biochem 271:3978–3989

    CAS  PubMed  Google Scholar 

  • Alonso-Casajus N, Dauvillee D, Viale AM et al (2006) Glycogen phosphorylase, the product of the glgP Gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli. J Bacteriol 188:5266–5272

    PubMed Central  CAS  PubMed  Google Scholar 

  • Archibald JM, Lane CE (2009) Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction. J Hered 100:582–590

    CAS  PubMed  Google Scholar 

  • Arias MC, Danchin EG, Coutinho P et al (2012) Eukaryote to gut bacteria transfer of a glycoside hydrolase gene essential for starch breakdown in plants. Mob Genet Elem 2:81–87

    Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    CAS  PubMed  Google Scholar 

  • Ball S (1998) Regulation of starch biosynthesis. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ball S (2002) The intricate pathway of starch biosynthesis and degradation in the monocellular alga Chlamydomonas reinhardtii. Aust J Chem 55:1–11

    Google Scholar 

  • Ball S, Deschamps P (2008) Starch metabolism. In: Stem DB (ed) The chlamydomonas sourcebook: 2. Organellar and metabolic processes. Academic, London, pp 1–40

    Google Scholar 

  • Ball S, Guan HP, James M et al (1996) From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 86:349–352

    CAS  PubMed  Google Scholar 

  • Ball S, Colleoni C, Cenci U et al (2011) The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot 62:1775–1801

    CAS  PubMed  Google Scholar 

  • Ball SG, Subtil A, Bhattacharya D et al (2013) Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis? Plant Cell 25:7–21

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bandyopadhyay A, Elvitigala T, Liberton M et al (2013) Variations in the rhythms of respiration and nitrogen fixation in members of the unicellular diazotrophic cyanobacterial genus Cyanothece. Plant Physiol 161:1334–1346

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bäumer D, Preisfeld A, Ruppel HG (2001) Isolation and characterization of paramylon synthase from Euglena gracilis (Euglenophyceae). J Phycol 37:38–46

    Google Scholar 

  • Baurain D, Brinkmann H, Petersen J et al (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27:1698–1709

    CAS  PubMed  Google Scholar 

  • Becker B, Hoef-Emden K, Melkonian M (2008) Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol Biol 8:203

    PubMed Central  PubMed  Google Scholar 

  • Beller M, Thiel K, Thul P et al (2010) Lipid droplets: a dynamic organelle moves into focus. FEBS Lett 584:2176–2182

    CAS  PubMed  Google Scholar 

  • Bergman B, Gallon JR, Rai AN et al (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185

    CAS  Google Scholar 

  • Bhattacharya D, Archibald JM, Weber AP et al (2007) How do endosymbionts become organelles? Understanding early events in plastid evolution. Bioessays 29:1239–1246

    CAS  PubMed  Google Scholar 

  • Bhattacharya D, Price DC, Chan CX et al (2013) Genome of the red alga Porphyridium purpureum. Nat Commun 4:1941

    PubMed Central  PubMed  Google Scholar 

  • Blank CE, Sanchez-Baracaldo P (2010) Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise in atmospheric oxygen. Geobiology 8:1–23

    CAS  PubMed  Google Scholar 

  • Borowitza MA (1978) Plastid development and floridean starch grain formation during carposporogenesis in the coralline red alga Lithothrix aspergillum gray. Protoplasma 95:217–228

    Google Scholar 

  • Brautigan DL (2013) Protein Ser/Thr phosphatases – the ugly ducklings of cell signalling. FEBS J 280:324–345

    CAS  PubMed  Google Scholar 

  • Burris RH (1991) Nitrogenase. J Biol Chem 266:9339–9342

    CAS  PubMed  Google Scholar 

  • Busi MV, Barchiesi J, Martin M et al (2013) Starch metabolism in green algae. Starch/Stärke 66:28–40

    Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T, Chao EE, Snell EA et al (2014) Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Mol Phylogenet Evol 81C:71–85

    Google Scholar 

  • Cenci U, Chabi M, Ducatez M et al (2013) Convergent evolution of polysaccharide debranching defines a common mechanism for starch accumulation in cyanobacteria and plants. Plant Cell 25:3961–3975

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cenci U, Nitschke F, Steup M et al (2014) Transition from glycogen to starch metabolism in Archaeplastida. Trends Plant Sci 19:18–28

    CAS  PubMed  Google Scholar 

  • Chandra G, Chater KF, Bornemann S (2011) Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157:1565–1572

    CAS  PubMed  Google Scholar 

  • Charng YY, Kakefuda G, Iglesias AA et al (1992) Molecular cloning and expression of the gene encoding ADP-glucose pyrophosphorylase from the cyanobacterium Anabaena sp. strain PCC 7120. Plant Mol Biol 20:37–47

    CAS  PubMed  Google Scholar 

  • Choi JH, Lee H, Kim YW et al (2009) Characterization of a novel debranching enzyme from Nostoc punctiforme possessing a high specificity for long branched chains. Biochem Biophys Res Commun 378:224–229

    CAS  PubMed  Google Scholar 

  • Collen J, Porcel B, Carre W et al (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252

    PubMed Central  CAS  PubMed  Google Scholar 

  • Colleoni C, Suzuki E (2012) Chapter 5: Storage polysaccharide metabolism in Cyanobacteria. In: Tetlow IJ (ed) Starch: origins, structure and metabolism, vol 5, Essential reviews in experimental biology. Society for Experimental Biology, London

    Google Scholar 

  • Colleoni C, Linka M, Deschamps P et al (2010) Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis. Mol Biol Evol 27:2691–2701

    CAS  PubMed  Google Scholar 

  • Collingro A, Tischler P, Weinmaier T et al (2011) Unity in variety – the pan-genome of the Chlamydiae. Mol Biol Evol 28:3253–3270

    PubMed Central  CAS  PubMed  Google Scholar 

  • Compaore J, Stal LJ (2010) Oxygen and the light–dark cycle of nitrogenase activity in two unicellular cyanobacteria. Environ Microbiol 12:54–62

    CAS  PubMed  Google Scholar 

  • Coppin A, Varre JS, Lienard L et al (2004) Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. J Mol Evol 60:257–267

    Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Crowe SA, Dossing LN, Beukes NJ et al (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538

    CAS  PubMed  Google Scholar 

  • Curatti L, Giarrocco LE, Cumino AC et al (2008) Sucrose synthase is involved in the conversion of sucrose to polysaccharides in filamentous nitrogen-fixing cyanobacteria. Planta 228:617–625

    CAS  PubMed  Google Scholar 

  • Curtis BA, Tanifuji G, Burki F et al (2012) Cryptophyte and chlorarachniophyte nuclear genomes reveal evolutionary mosaicism and fate of nucleomorphs. Nature 492:59–65

    CAS  PubMed  Google Scholar 

  • Dauvillée D, Kinderf IS, Li Z et al (2005) Role of the Escherichia coli glgX gene in glycogen metabolism. J Bacteriol 187:1465–1473

    PubMed Central  PubMed  Google Scholar 

  • Dauvillee D, Deschamps P, Ral JP et al (2009) Genetic dissection of floridean starch synthesis in the cytosol of the model dinoflagellate Crypthecodinium cohnii. Proc Natl Acad Sci U S A 106:21126–21130

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deane JA, Strachan IM, Saunders GW et al (2002) Cryptomonad evolution: nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. J Phycol 38:1236–1244

    CAS  Google Scholar 

  • Delrue B, Fontaine T, Routier F et al (1992) Waxy Chlamydomonas reinhardtii: monocellular algal mutants defective in amylose biosynthesis and granule-bound starch synthase activity accumulate a structurally modified amylopectin. J Bacteriol 174:3612–3620

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177

    PubMed  Google Scholar 

  • Deschamps P, Haferkamp I, Dauvillée D et al (2006) Nature of the periplastidial pathway of starch synthesis in the cryptophyte Guillardia theta. Eukaryot Cell 5:954–963

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deschamps P, Colleoni C, Nakamura Y et al (2008a) Metabolic symbiosis and the birth of the plant kingdom. Mol Biol Evol 25:536–548

    CAS  PubMed  Google Scholar 

  • Deschamps P, Guillebeault D, Devassine J et al (2008b) The heterotrophic dinoflagellate Crypthecodinium cohnii defines a model genetic system to investigate cytoplasmic starch synthesis. Eukaryot Cell 7:872–880

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deschamps P, Haferkamp I, d’Hulst C et al (2008c) The relocation of starch metabolism to chloroplasts: when, why and how. Trends Plant Sci 13:574–582

    CAS  PubMed  Google Scholar 

  • Deschamps P, Moreau H, Worden AZ et al (2008d) Early gene duplication within chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts. Genetics 178:2373–2387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Devillers CH, Piper ME, Ballicora MA et al (2003) Characterization of the branching patterns of glycogen branching enzyme truncated on the N-terminus. Arch Biochem Biophys 418:34–38

    CAS  PubMed  Google Scholar 

  • Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244

    CAS  PubMed  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M et al (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    CAS  PubMed  Google Scholar 

  • Ekman P, Yu S, Pedersén M (1991) Effects of altered salinity, darkness and algal nutrient status on floridoside and starch content, alpha-galactosidase activity and agar yield of cultivated Gracilaria sordida. Br Phycol J 26:123–131

    Google Scholar 

  • Facchinelli F, Pribil M, Oster U et al (2013) Proteomic analysis of the Cyanophora paradoxa muroplast provides clues on early events in plastid endosymbiosis. Planta 237:637–651

    CAS  PubMed  Google Scholar 

  • Falcon LI, Cipriano F, Chistoserdov AY et al (2002) Diversity of diazotrophic unicellular cyanobacteria in the tropical North Atlantic Ocean. Appl Environ Microbiol 68:5760–5764

    PubMed Central  CAS  PubMed  Google Scholar 

  • Falkowski P, Raven JA (2007) Aquatic photosynthesis. Princeton University Press, Princeton

    Google Scholar 

  • Fathinejad S, Steiner JM, Reipert S et al (2008) A carboxysomal carbon-concentrating mechanism in the cyanelles of the ‘coelacanth’ of the algal world, Cyanophora paradoxa? Physiol Plant 133:27–32

    CAS  PubMed  Google Scholar 

  • Fettke J, Hejazi M, Smirnova J et al (2009) Eukaryotic starch degradation: integration of plastidial and cytosolic pathways. J Exp Bot 60:2907–2922

    CAS  PubMed  Google Scholar 

  • Forsyth G, Hirst EL, Oxford AE (1953) Protozoal polysaccharides. Structure of a polysaccharide produced by Cycloposthium. J Chem Soc 2030–2033

    Google Scholar 

  • Fredrick JF (1968) Biochemical evolution of glucosyl transferase isozymes in algae. Ann N Y Acad Sci 151:413–423

    CAS  PubMed  Google Scholar 

  • Frueauf JB, Ballicora MA, Preiss J (2002) Alteration of inhibitor selectivity by site-directed mutagenesis of Arg(294) in the ADP-glucose pyrophosphorylase from Anabaena PCC 7120. Arch Biochem Biophys 400:208–214

    CAS  PubMed  Google Scholar 

  • Fu J, Xu X (2006) The functional divergence of two glgP homologues in Synechocystis sp. PCC 6803. FEMS Microbiol Lett 260:201–209

    CAS  PubMed  Google Scholar 

  • Glöckner G, Noegel A (2013) Comparative genomics in the Amoebozoa clade. Biol Rev 88:215–225

    PubMed  Google Scholar 

  • Goldemberg SH, Marechal LR (1963) Biosynthesis of paramylon in Euglena gracilis. Biochim Biophys Acta 71:743–744

    CAS  PubMed  Google Scholar 

  • Grosche C, Hempel F, Bolte K et al (2014) The periplastidal compartment: a naturally minimized eukaryotic cytoplasm. Curr Opin Microbiol 22C:88–93

    Google Scholar 

  • Grundel M, Scheunemann R, Lockau W et al (2012) Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the Cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158:3032–3043

    PubMed  Google Scholar 

  • Guerra LT, Xu Y, Bennette N et al (2013) Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J Biotechnol 166:65–75

    CAS  PubMed  Google Scholar 

  • Haferkamp I, Deschamps P, Ast M et al (2006) Molecular and biochemical analysis of periplastidial starch metabolism in the cryptophyte Guillardia theta. Eukaryot Cell 5:964–971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henrissat B, Deleury E, Coutinho PM (2002) Glycogen metabolism loss: a common marker of parasitic behaviour in bacteria? Trends Genet 18:437–440

    CAS  PubMed  Google Scholar 

  • Higo A, Katoh H, Ohmori K et al (2006) The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120. Microbiology 152:979–987

    CAS  PubMed  Google Scholar 

  • Hirabaru C, Izumo A, Fujiwara S et al (2010) The primitive rhodophyte Cyanidioschyzon merolae contains a semiamylopectin-type, but not an amylose-type, alpha-glucan. Plant Cell Physiol 51:682–693

    CAS  PubMed  Google Scholar 

  • Huang J, Gogarten JP (2007) Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 8:R99

    PubMed Central  PubMed  Google Scholar 

  • Husnik F, Nikoh N, Koga R et al (2013) Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153:1567–1578

    CAS  PubMed  Google Scholar 

  • Izumo A, Fujiwara S, Sakurai T et al (2011) Effects of granule-bound starch synthase I-defective mutation on the morphology and structure of pyrenoidal starch in Chlamydomonas. Plant Sci 180:238–245

    CAS  PubMed  Google Scholar 

  • James MG, Robertson DS, Myers AM (1995) Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7:417–429

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kiel JA, Boels JM, Beldman G et al (1990) Nucleotide sequence of the Synechococcus sp. PCC7942 branching enzyme gene (glgB): expression in Bacillus subtilis. Gene 89:77–84

    CAS  PubMed  Google Scholar 

  • Kiss JK, Roberts EM, Brown RM et al (1988) X-ray and dissolution studies of paramylon storage granules from Euglena. Protoplasma 146:150–156

    Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA et al (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci U S A 102:11131–11136

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kotting O, Pusch K, Tiessen A et al (2005) Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiol 137:242–252

    PubMed Central  PubMed  Google Scholar 

  • Kotting O, Santelia D, Edner C et al (2009) STARCH-EXCESS4 is a laforin-like Phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. Plant Cell 21:334–346

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kubo A, Fujita N, Harada K et al (1999) The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol 121:399–410

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ladeira RB, Freitas MA, Silva EF et al (2005) Glycogen as a carbohydrate energy reserve in trophozoites of Giardia lamblia. Parasitol Res 96:418–421

    PubMed  Google Scholar 

  • Lafora GR, Glueck B (1911) Beitrag zur histopathologie der myoklonischen epilepsie. Z Gesamte Neurol Psychiatr 6:1–14

    Google Scholar 

  • Larsson J, Nylander JA, Bergman B (2011) Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol Biol 11:187

    PubMed Central  PubMed  Google Scholar 

  • Latysheva N, Junker VL, Palmer WJ et al (2012) The evolution of nitrogen fixation in cyanobacteria. Bioinformatics 28:603–606

    CAS  PubMed  Google Scholar 

  • Le Gall L, Saunders GW (2007) A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the new red algal subclass Corallinophycidae. Mol Phylogenet Evol 43:1118–1130

    PubMed  Google Scholar 

  • Linka M, Jamai A, Weber AP (2008) Functional characterization of the plastidic phosphate translocator gene family from the thermo-acidophilic red alga Galdieria sulphuraria reveals specific adaptations of primary carbon partitioning in green plants and red algae. Plant Physiol 148:1487–1496

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lister DL, Bateman JM, Purton S et al (2003) DNA transfer from chloroplast to nucleus is much rarer in Chlamydomonas than in tobacco. Gene 316:33–38

    CAS  PubMed  Google Scholar 

  • Lluisma AO, Ragan MA (1998) Characterization of a galactose-1-phosphate uridylyltransferase gene from the marine red alga Gracilaria gracilis. Curr Genet 34:112–119

    CAS  PubMed  Google Scholar 

  • Loddenkotter B, Kammerer B, Fischer K et al (1993) Expression of the functional mature chloroplast triose phosphate translocator in yeast internal membranes and purification of the histidine-tagged protein by a single metal-affinity chromatography step. Proc Natl Acad Sci U S A 90:2155–2159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lorenzo-Morales J, Kliescikova J, Martinez-Carretero E et al (2008) Glycogen phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encystment process using RNA interference. Eukaryot Cell 7:509–517

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lou J, Dawson KA, Strobel HJ (1997) Glycogen biosynthesis via UDP-glucose in the ruminal bacterium Prevotella bryantii B1(4). Appl Environ Microbiol 63:4355–4359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu Y, Sharkey TD (2006) The importance of maltose in transitory starch breakdown. Plant Cell Environ 29:353–366

    CAS  PubMed  Google Scholar 

  • Lu C, Lei L, Peng B et al (2013) Chlamydia trachomatis GlgA is secreted into host cell cytoplasm. PLoS One 8:e68764

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maddelein ML, Libessart N, Bellanger F et al (1994) Toward an understanding of the biogenesis of the starch granule. Determination of granule-bound and soluble starch synthase functions in amylopectin synthesis. J Biol Chem 269:25150–25157

    CAS  PubMed  Google Scholar 

  • Manners DJ, Ryley JF (1952) Studies on the metabolism of the Protozoa. II. The glycogen of the ciliate Tetrahymena pyriformis (Glaucoma piriformis). Biochem J 52:480–482

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manners DJ, Ryley JF (1955) Studies on the metabolism of the protozoa. 6. The glycogens of the parasitic flagellates Trichomonas foetus and Trichomonas gallinae. Biochem J 59:369–372

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marin B, Nowack EC, Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–432

    CAS  PubMed  Google Scholar 

  • Martijn J, Ettema TJ (2013) From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem Soc Trans 41:451–457

    CAS  PubMed  Google Scholar 

  • Matsuzaki M, Misumi O, Shin IT et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    CAS  PubMed  Google Scholar 

  • McCracken DA, Cain JR (1981) Amylose in Floridean starch. New Phytol 88

    Google Scholar 

  • Meeuse BJ, Kreger DR (1954) On the nature of floridean starch and Ulva starch. Biochim Biophys Acta 13:593–595

    CAS  PubMed  Google Scholar 

  • Meeuse BJ, Andries M, Wood JA (1960) Floridean starch. J Exp Bot 11:129–140

    CAS  Google Scholar 

  • Miao X, Wu Q, Wu G et al (2003) Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp PCC 6803. FEMS Microbiol Lett 218:71–77

    CAS  PubMed  Google Scholar 

  • Moran-Zorzano MT, Alonso-Casajus N, Munoz FJ et al (2007) Occurrence of more than one important source of ADPglucose linked to glycogen biosynthesis in Escherichia coli and Salmonella. FEBS Lett 581:4423–4429

    CAS  PubMed  Google Scholar 

  • Moriyama T, Sakurai K, Sekine K et al (2014) Subcellular distribution of central carbohydrate metabolism pathways in the red alga Cyanidioschyzon merolae. Planta 240:585–598

    CAS  PubMed  Google Scholar 

  • Mouille G, Maddelein ML, Libessart N et al (1996) Preamylopectin processing: a mandatory step for starch biosynthesis in plants. Plant Cell 8:1353–1366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moustafa A, Reyes-Prieto A, Bhattacharya D (2008) Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions. PLoS One 3:e2205

    PubMed Central  PubMed  Google Scholar 

  • Murakami T, Kanai T, Takata H et al (2006) A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 188:5915–5924

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagashima H, Nakamura S, Nisizawa K et al (1971) Enzymatic synthesis of floridean starch in red alga Serraticardia maxima. Plant Cell Physiol 12:243–253

    CAS  Google Scholar 

  • Nakamura Y, Takahashi J, Sakurai A et al (2005) Some Cyanobacteria synthesize semi-amylopectin type alpha-polyglucans instead of glycogen. Plant Cell Physiol 46:539–545

    CAS  PubMed  Google Scholar 

  • Nakayama A, Yamamoto K, Tabata S (2001) Identification of the catalytic residues of bifunctional glycogen debranching enzyme. J Biol Chem 276:28824–28828

    CAS  PubMed  Google Scholar 

  • Nelson OE, Rines HW (1962) The enzymatic deficiency in the waxy mutant of maize. Biochem Biophys Res Commun 9:297–300

    CAS  PubMed  Google Scholar 

  • Nowack EC, Melkonian M, Glockner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418

    CAS  PubMed  Google Scholar 

  • Nyvall P, Pelloux J, Davies HV et al (1999) Purification and characterisation of a novel starch synthase selective for uridine 5′-diphosphate glucose from the red alga Gracilaria tenuistipitata. Planta 209:143–152

    CAS  PubMed  Google Scholar 

  • Nyvall P, Pedersen M, Kenne L et al (2000) Enzyme kinetics and chemical modification of alpha-1,4-glucan lyase from Gracilariopsis sp. Phytochemistry 54:139–145

    CAS  PubMed  Google Scholar 

  • Ojcius DM, Degani H, Mispelter J et al (1998) Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. NMR studies of living cells. J Biol Chem 273:7052–7058

    CAS  PubMed  Google Scholar 

  • Pade N, Linka N, Ruth W et al (2014) Floridoside and isofloridoside are synthesized by trehalose 6-phosphate synthase-like enzymes in the red alga Galdieria sulphuraria. New Phytol. doi:10.1111/nph.13108

  • Page-Sharp M, Behm CA, Smith GD (1999) Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial Scytonema species isolated from desert soils. Biochim Biophys Acta 1472:519–528

    CAS  PubMed  Google Scholar 

  • Palmer TN, Ryman BE, Whelan WJ (1976) The action pattern of amylomaltase from Escherichia coli. Eur J Biochem 69:105–115

    CAS  PubMed  Google Scholar 

  • Park JT, Shim JH, Tran PL et al (2011) Role of maltose enzymes in glycogen synthesis by Escherichia coli. J Bacteriol 193:2517–2526

    PubMed Central  CAS  PubMed  Google Scholar 

  • Petersen J, Ludewig AK, Michael V et al (2014) Chromera velia, endosymbioses and the rhodoplex hypothesis – plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol 6:666–684

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pittenauer E, Schmid ER, Allmaier G et al (1993) Structural characterization of the cyanelle peptidoglycan of Cyanophora paradoxa by 252Cf plasma desorption mass spectrometry and fast atom bombardment/tandem mass spectrometry. Biol Mass Spectrom 22:524–536

    CAS  PubMed  Google Scholar 

  • Plancke C, Colleoni C, Deschamps P et al (2008) Pathway of cytosolic starch synthesis in the model glaucophyte Cyanophora paradoxa. Eukaryot Cell 7:247–257

    PubMed Central  CAS  PubMed  Google Scholar 

  • Porchia AC, Curatti L, Salerno GL (1999) Sucrose metabolism in cyanobacteria: sucrose synthase from Anabaena sp. strain PCC 7119 is remarkably different from the plant enzymes with respect to substrate affinity and amino-terminal sequence. Planta 210:34–40

    CAS  PubMed  Google Scholar 

  • Preiss J (1984) Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38:419–458

    CAS  PubMed  Google Scholar 

  • Price DC, Chan CX, Yoon HS et al (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–847

    CAS  PubMed  Google Scholar 

  • Ragan MA, Bird CJ, Rice EL et al (1994) A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc Natl Acad Sci U S A 91:7276–7280

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reyes-Prieto A, Moustafa A, Bhattacharya D (2008) Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic. Curr Biol 18:956–962

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey SC et al (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    CAS  PubMed  Google Scholar 

  • Rogers PV, Luo S, Sucic JF et al (1992) Characterization and cloning of glycogen phosphorylase 1 from Dictyostelium discoideum. Biochim Biophys Acta 1129:262–272

    CAS  PubMed  Google Scholar 

  • Rogers PV, Sucic JF, Yin Y et al (1994) Disruption of glycogen phosphorylase gene expression in Dictyostelium: evidence for altered glycogen metabolism and developmental coregulation of the gene products. Differentiation 56:1–12

    CAS  PubMed  Google Scholar 

  • Rutherford CL, Peery RB, Sucic JF et al (1992) Cloning, structural analysis, and expression of the glycogen phosphorylase-2 gene in Dictyostelium. J Biol Chem 267:2294–2302

    CAS  PubMed  Google Scholar 

  • Sanchez-Baracaldo P, Ridgwell A, Raven JA (2014) A neoproterozoic transition in the marine nitrogen cycle. Curr Biol 24:652–657

    CAS  PubMed  Google Scholar 

  • Sanchez-Puerta MV, Lippmeier JC, Apt KE et al (2007) Plastid genes in a non-photosynthetic dinoflagellate. Protist 158:105–117

    CAS  PubMed  Google Scholar 

  • Santos CR, Tonoli CC, Trindade DM et al (2011) Structural basis for branching-enzyme activity of glycoside hydrolase family 57: structure and stability studies of a novel branching enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Proteins 79:547–557

    CAS  PubMed  Google Scholar 

  • Sawada T, Nakamura Y, Ohdan T et al (2014) Diversity of reaction characteristics of glucan branching enzymes and the fine structure of alpha-glucan from various sources. Arch Biochem Biophys 562C:9–21

    Google Scholar 

  • Schlichting R, Bothe H (1993) The cyanelle (Organelles of a low evolutionary scale) possess a phosphate-translocator and a glucose-carrier in Cyanophora paradoxa. Botanica Acta 106:428–434

    CAS  Google Scholar 

  • Schneegurt MA, Sherman DM, Nayar S et al (1994) Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 176:1586–1597

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schonknecht G, Chen WH, Ternes CM et al (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210

    PubMed  Google Scholar 

  • Schwoppe C, Winkler HH, Neuhaus HE (2002) Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J Bacteriol 184:2108–2115

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schwoppe C, Winkler HH, Neuhaus HE (2003) Connection of transport and sensing by UhpC, the sensor for external glucose-6-phosphate in Escherichia coli. Eur J Biochem 270:1450–1457

    CAS  PubMed  Google Scholar 

  • Serodio J, Cruz S, Cartaxana P et al (2014) Photophysiology of kleptoplasts: photosynthetic use of light by chloroplasts living in animal cells. Philos Trans R Soc Lond B Biol Sci 369:20130242

    PubMed Central  PubMed  Google Scholar 

  • Sesma JI, Iglesias AA (1998) Synthesis of floridean starch in the red alga Gracilaria gracilis occurs via ADP-glucose. In: Garab G (ed) Photosynthesis: mechanisms and effects. Kluwer Academic Publishers, Dordrecht, pp 3537–3540

    Google Scholar 

  • Sheath RG, Hellebust JA, Sawa T (1979) Floridean starch metabolism of Porphyridium purpureum Rhophyta I. Changes during ageing of batch culture. Phycologia 18:292–293

    Google Scholar 

  • Sheng J, Preiss J (1997) Arginine294 is essential for the inhibition of Anabaena PCC 7120 ADP-glucose pyrophosphorylase by phosphate. Biochemistry 36:13077–13084

    CAS  PubMed  Google Scholar 

  • Shih PM, Matzke NJ (2013) Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc Natl Acad Sci U S A 110:12355–12360

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shimonaga T, Fujiwara S, Kaneko M et al (2007) Variation in storage alpha-polyglucans of red algae: amylose and semi-amylopectin types in Porphyridium and glycogen type in Cyanidium. Mar Biotechnol (NY) 9:192–202

    CAS  Google Scholar 

  • Shimonaga T, Konishi M, Oyama Y et al (2008) Variation in storage alpha-glucans of the Porphyridiales (Rhodophyta). Plant Cell Physiol 49:103–116

    CAS  PubMed  Google Scholar 

  • Shoguchi E, Shinzato C, Kawashima T et al (2013) Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 23:1399–1408

    CAS  PubMed  Google Scholar 

  • Singh PK (1973) Nitrogen fixation by the unicellular blue-green alga Aphanothece. Arch Mikrobiol 92:59–62

    CAS  Google Scholar 

  • Stadnichuk IN, Semenova LR, Smirnova GP et al (2007) A highly branched storage polyglucan in the thermoacidophilic red microalga Galdieria maxima cells. Prikl Biokhim Mikrobiol 43:88–93

    CAS  PubMed  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S et al (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci U S A 100:8828–8833

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steiner JM, Yusa F, Pompe JA et al (2005) Homologous protein import machineries in chloroplasts and cyanelles. Plant J 44:646–652

    CAS  PubMed  Google Scholar 

  • Streb S, Delatte T, Umhang M et al (2008) Starch granule biosynthesis in Arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase. Plant Cell 20:3448–3466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Summons RE, Jahnke LL, Hope JM et al (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    CAS  PubMed  Google Scholar 

  • Suzuki E, Umeda K, Nihei S, Moriya K, Ohkawa H, Fujiwara S, Tsuzuki M, Nakamura Y (2007) Role of the GlgX protein in glycogen metabolism of the cyanobacterium, Synechococcus elongatus PCC 7942. Biochim Biophys Acta 1770:763–773

    CAS  PubMed  Google Scholar 

  • Suzuki E, Ohkawa H, Moriya K et al (2010) Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis. Appl Environ Microbiol 76:3153–3159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki E, Onoda M, Colleoni C et al (2013) Physicochemical variation of cyanobacterial starch, the insoluble alpha-Glucans in cyanobacteria. Plant Cell Physiol 54:465–473

    CAS  PubMed  Google Scholar 

  • Szydlowski N, Ragel P, Raynaud S et al (2009) Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant Cell 21:2443–2457

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tagliabracci VS, Turnbull J, Wang W et al (2007) Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. Proc Natl Acad Sci U S A 104:19262–19266

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tomos AD, Northcote DH (1978) A protein-glucan intermediate during paramylon synthesis. Biochem J 174:283–290

    PubMed Central  CAS  PubMed  Google Scholar 

  • Torija MJ, Novo M, Lemassu A et al (2005) Glycogen synthesis in the absence of glycogenin in the yeast Saccharomyces cerevisiae. FEBS Lett 579:3999–4004

    CAS  PubMed  Google Scholar 

  • Tresse E, Kosta A, Giusti C et al (2008) A UDP-glucose derivative is required for vacuolar autophagic cell death. Autophagy 4:680–691

    CAS  PubMed  Google Scholar 

  • Tuttle RC, Loeblich AR 3rd (1974) Genetic recombination in the dinoflagellate Crypthecodinium cohnii. Science 185:1061–1062

    CAS  PubMed  Google Scholar 

  • Tuttle RC, Loeblich AR 3rd (1977) N-methyl-N′-nitro-N-nitrosoguanidine and UV induced mutants of the dinoflagellate Crypthecodinium cohnii. J Protozool 24:313–316

    CAS  PubMed  Google Scholar 

  • Ugalde JE, Parodi AJ, Ugalde RA (2003) De novo synthesis of bacterial glycogen: Agrobacterium tumefaciens glycogen synthase is involved in glucan initiation and elongation. Proc Natl Acad Sci U S A 100:10659–10663

    PubMed Central  CAS  PubMed  Google Scholar 

  • Villarejo A, Martinez F, del Pino Plumed M et al (1996) The induction of the CO2 concentrating mechanism in a starch-less mutant of Chlamydomonas reinhardtii. Physiol Plant 98:798–802

    CAS  Google Scholar 

  • Viola R, Nyvall P, Pedersen M (2001) The unique features of starch metabolism in red algae. Proc Biol Sci 268:1417–1422

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vogel K, Barber AA (1968) Degradation of paramylon by Euglena gracilis. J Protozool 15:657–662

    CAS  PubMed  Google Scholar 

  • Wattebled F, Buleon A, Bouchet B et al (2002) Granule-bound starch synthase I. A major enzyme involved in the biogenesis of B-crystallites in starch granules. Eur J Biochem 269:3810–3820

    CAS  PubMed  Google Scholar 

  • Wattebled F, Dong Y, Dumez S et al (2005) Mutants of Arabidopsis lacking a chloroplastic isoamylase accumulate phytoglycogen and an abnormal form of amylopectin. Plant Physiol 138:184–195

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weber AP, Linka M, Bhattacharya D (2006) Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot Cell 5:609–612

    PubMed Central  CAS  PubMed  Google Scholar 

  • Williams TA, Foster PG, Nye TM et al (2012) A congruent phylogenomic signal places eukaryotes within the Archaea. Proc Biol Sci 279:4870–4879

    PubMed Central  CAS  PubMed  Google Scholar 

  • Williamson BD, Favis R, Brickey DA et al (1996) Isolation and characterization of glycogen synthase in Dictyostelium discoideum. Dev Genet 19:350–364

    CAS  PubMed  Google Scholar 

  • Wilson WA, Roach PJ, Montero M et al (2010) Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34:952–985

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wisecaver JH, Hackett JD (2011) Dinoflagellate genome evolution. Annu Rev Microbiol 65:369–387

    CAS  PubMed  Google Scholar 

  • Wolf A, Kramer R, Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134

    CAS  PubMed  Google Scholar 

  • Wyatt JT, Silvey JK (1969) Nitrogen fixation by gloeocapsa. Science 165:908–909

    CAS  PubMed  Google Scholar 

  • Xu Y, Guerra LT, Li Z et al (2013) Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: cell factories for soluble sugars. Metab Eng 16:56–67

    CAS  PubMed  Google Scholar 

  • Yoo SH, Spalding MH, Jane JL (2002) Characterization of cyanobacterial glycogen isolated from the wild type and from a mutant lacking of branching enzyme. Carbohydr Res 337:2195–2203

    CAS  PubMed  Google Scholar 

  • Yoo SH, Lee BH, Moon Y et al (2014) Glycogen synthase isoforms in Synechocystis sp. PCC6803: identification of different roles to produce glycogen by targeted mutagenesis. PLoS One 9:e91524

    PubMed Central  PubMed  Google Scholar 

  • Yoon HS, Hackett JD, Pinto G et al (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci U S A 99:15507–15512

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C et al (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    CAS  PubMed  Google Scholar 

  • Yoon HS, Müller KM, Stheath RG et al (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482–492

    CAS  Google Scholar 

  • Yoshikawa H, Nagashima M, Morimoto K et al (2003) Freeze-fracture and cytochemical studies on the in vitro cyst form of reptilian Blastocystis pythoni. J Eukaryot Microbiol 50:70–75

    PubMed  Google Scholar 

  • Yu S, Pedersen M (1993) Alpha-1,4-glucan lyase, a new class of starch/glycogen-degrading enzyme. II. Subcellular localization and partial amino-acid sequence. Planta 191:137–142

    CAS  PubMed  Google Scholar 

  • Yu S, Bojsen K, Svensson B et al (1999) alpha-1,4-glucan lyases producing 1,5-anhydro-D-fructose from starch and glycogen have sequence similarity to alpha-glucosidases. Biochim Biophys Acta 1433:1–15

    CAS  PubMed  Google Scholar 

  • Yu TS, Kofler H, Hausler RE et al (2001) The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell 13:1907–1918

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zea CJ, Pohl NL (2004) General assay for sugar nucleotidyltransferases using electrospray ionization mass spectrometry. Anal Biochem 328:196–202

    CAS  PubMed  Google Scholar 

  • Zona R, Chang-Pi-Hin F, O’Donohue MJ et al (2004) Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. Eur J Biochem 271:2863–2872

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Ball .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ball, S., Colleoni, C., Arias, M.C. (2015). The Transition from Glycogen to Starch Metabolism in Cyanobacteria and Eukaryotes. In: Nakamura, Y. (eds) Starch. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55495-0_4

Download citation

Publish with us

Policies and ethics