Skip to main content
Log in

MEDEA-interacting protein LONG-CHAIN BASE KINASE 1 promotes pattern-triggered immunity in Arabidopsis thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Key message

Arabidopsis LONG-CHAIN BASE KINASE 1 (LCBK1) interacts with MEDEA, a component of PCR2 complex that negatively regulates immunity. LCBK1 phosphorylates phytosphingosine and thereby promotes stomatal immunity against bacterial pathogens.

Abstract

Arabidopsis polycomb-group repressor complex2 (PRC2) protein MEDEA (MEA) suppresses both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). MEA represses the expression of RPS2 and thereby attenuates AvrRpt2 effector-mediated ETI. However, the mechanism of MEA-mediated PTI diminution was not known. By screening the Arabidopsis cDNA library using yeast-2-hybrid interaction, we identified LONG-CHAIN BASE KINASE1 (LCBK1) as an MEA-interacting protein. We found that lcbk1 mutants are susceptible to virulent bacterial pathogens, such as Pseudomonas syringae pv maculicola (Psm) and P. syringae pv tomato (Pst) but not the avirulent strain of Pst that carries AvrRpt2 effector. Pathogen inoculation induces LCBK1 expression, especially in guard cells. We found that LCBK1 has a positive regulatory role in stomatal closure after pathogen inoculation. WT plants close stomata within an hour of Pst inoculation or flg22 (a 22 amino acid peptide from bacterial flagellin protein that activates PTI) treatment, but not lcbk1 mutants. LCBK1 phosphorylates phytosphingosine (PHS). Exogenous application of phosphorylated PHS (PHS-P) induces stomatal closure and rescues loss-of-PTI phenotype of lcbk1 mutant plants. MEA overexpressing (MEA-Oex) plants are defective, whereas loss-of-function mea-6 mutants are hyperactive in PTI-induced stomatal closure. Exogenous application of PHS-P rescues loss-of-PTI in MEA-Oex plants. Results altogether demonstrate that LCBK1 is an interactor of MEA that positively regulates PTI-induced stomatal closure in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arnaud D, Lee S, Takebayashi Y, Choi D, Choi J, Sakakibara H, Hwang I (2017) Cytokinin-mediated regulation of reactive oxygen species homeostasis modulates stomatal immunity in arabidopsis. Plant Cell 29:543–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banday ZZ, Nandi AK (2018) Arabidopsis thaliana GLUTATHIONE-S-TRANSFERASE THETA 2 interacts with RSI1/FLD to activate systemic acquired resistance. Mol Plant Pathol 19:464–475

    CAS  PubMed  Google Scholar 

  • Chen S, Songkumarn P, Liu J, Wang GL (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150:1111–1121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi Y, Lee Y, Jeon BW, Staiger CJ, Lee Y (2008) Phosphatidylinositol 3- and 4-phosphate modulate actin filament reorganization in guard cells of day flower. Plant, Cell Environ 31:366–377

    CAS  Google Scholar 

  • Coursol S, Le Stunff H, Lynch DV, Gilroy S, Assmann SM, Spiegel S (2005) Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture. Plant Physiol 137:724–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson RC (2010) Roles for Sphingolipids in Saccharomyces cerevisiae. Adv Exp Med Biol 688:217–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eun SO, Lee Y (1997) Actin filaments of guard cells are reorganized in response to light and abscisic acid. Plant Physiol 115:1491–1498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friant S, Zanolari B, Riezman H (2000) Increased protein kinase or decreased PP2A activity bypasses sphingoid base requirement in endocytosis. EMBO J 19:2834–2844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giri MK, Singh N, Banday ZZ, Singh V, Ram H, Singh D, Chattopadhyay S, Nandi AK (2017) GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana. Plant J 91:802–815

    CAS  PubMed  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    CAS  PubMed  Google Scholar 

  • Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280:446–450

    CAS  PubMed  Google Scholar 

  • Huang X, Zhang Y, Zhang X, Shi Y (2017) Long-chain base kinase1 affects freezing tolerance in Arabidopsis thaliana. Plant Sci 259:94–103

    CAS  PubMed  Google Scholar 

  • Huot B, Yao J, Montgomery BL, He SY (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7:1267–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imai H, Nishiura H (2005) Phosphorylation of sphingoid long-chain bases in Arabidopsis: functional characterization and expression of the first sphingoid long-chain base Kinase gene in plants. Plant Cell Physiol 46:375–380

    CAS  PubMed  Google Scholar 

  • Kinoshita T, Yadegari R, Harada JJ, Goldberg RB, Fischer RL (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11:1945–1952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev 16:2893–2905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamaze C, Fujimoto LM, Yin HL, Schmid SL (1997) The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J Biol Chem 272:20332–20335

    CAS  PubMed  Google Scholar 

  • Lee D, Bourdais G, Yu G, Robatzek S, Coaker G (2015) Phosphorylation of the plant immune regulator RPM1-INTERACTING PROTEIN4 enhances plant plasma membrane H(+)-ATPase activity and inhibits flagellin-triggered immune responses in Arabidopsis. Plant Cell 27:2042–2056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MW, Yang Y (2006) Transient expression assay by agroinfiltration of leaves. Methods Mol Biol 323:225–229

    PubMed  Google Scholar 

  • Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G (2009) RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol 7:e1000139

    PubMed  PubMed Central  Google Scholar 

  • Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci 96:296–301

    CAS  PubMed  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    CAS  PubMed  Google Scholar 

  • Melotto M, Zhang L, Oblessuc PR, He SY (2017) Stomatal defense a decade later. Plant Physiol 174:561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva M, Butenko Y, Hsieh TF, Hakim O, Katz A, Smorodinsky NI, Michaeli D, Fischer RL, Ohad N (2016) FIE, a nuclear PRC2 protein, forms cytoplasmic complexes in Arabidopsis thaliana. J Exp Bot 67:6111–6123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peer M, Stegmann M, Mueller MJ, Waller F (2010) Pseudomonas syringae infection triggers de novo synthesis of phytosphingosine from sphinganine in Arabidopsis thaliana. FEBS Lett 584:4053–4056

    CAS  PubMed  Google Scholar 

  • Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Ann Rev Genet 38:413–443

    CAS  PubMed  Google Scholar 

  • Roy A, Basak NP, Banerjee S (2012) Notch1 intracellular domain increases cytoplasmic EZH2 levels during early megakaryopoiesis. Cell Death Dis 3:e380–e380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Nandi AK (2017) Arabidopsis thaliana methionine sulfoxide reductase B8 influences stress-induced cell death and effector-triggered immunity. Plant Mol Biol 93:109–120

    CAS  PubMed  Google Scholar 

  • Roy S, Gupta P, Rajabhoj MP, Maruthachalam R, Nandi AK (2018) The polycomb-group repressor MEDEA attenuates pathogen defense. Plant Physiol 177:1728–1742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571–571

    PubMed  PubMed Central  Google Scholar 

  • Singh N, Swain S, Singh A, Nandi AK (2018) AtOZF1 Positively regulates defense against bacterial pathogens and NPR1-independent salicylic acid signaling. Mol Plant Microb Interact 31:323–333

    CAS  Google Scholar 

  • Singh V, Roy S, Singh D, Nandi AK (2014) Arabidopsis flowering locus D influences systemic-acquired-resistance- induced expression and histone modifications of WRKY genes. J Biosci 39:119–126

    CAS  PubMed  Google Scholar 

  • Su IH, Dobenecker M-W, Dickinson E, Oser M, Basavaraj A, Marqueron R, Viale A, Reinberg D, Wülfing C, Tarakhovsky A (2005) Polycomb group protein Ezh2 controls actin polymerization and cell signaling. Cell 121:425–436

    CAS  PubMed  Google Scholar 

  • Su J, Zhang M, Zhang L, Sun T, Liu Y, Lukowitz W, Xu J, Zhang S (2017) Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell 29:526–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    CAS  PubMed  Google Scholar 

  • Varet A, Hause B, Hause G, Scheel D, Lee J (2003) The Arabidopsis NHL3 gene encodes a plasma membrane protein and its overexpression correlates with increased resistance to Pseudomonas syringae pv. tomato DC3000. Plant Physiol 132:2023–2033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J 56:505–516

    CAS  PubMed  Google Scholar 

  • Zanolari B, Friant S, Funato K, Sutterlin C, Stevenson BJ, Riezman H (2000) Sphingoid base synthesis requirement for endocytosis in Saccharomyces cerevisiae. EMBO J 19:2824–2833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Tian C, Yin K, Wang W, Qiu JL (2019) Postinvasive bacterial resistance conferred by open stomata in rice. Mol Plant Microb Interact 32:255–266

    CAS  Google Scholar 

  • Zhang J, Zhou JM (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3:783–793

    CAS  PubMed  Google Scholar 

  • Zheng X, Kang S, Jing Y, Ren Z, Li L, Zhou JM, Berkowitz G, Shi J, Fu A, Lan W, Zhao F, Luan S (2018) Danger-associated peptides close stomata by OST1-independent activation of anion channels in guard cells. Plant Cell 30:1132–1146

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge ABRC, Ohio State University for mutant seeds. This work was supported by the Science and Engineering Research Board project (SERB/SR/SO/PS/150/2012 to AKN), and the CSIR fellowship to SR and PG.

Author information

Authors and Affiliations

Authors

Contributions

PG-performed most of the experiments, analyzed data, and designed some of the experiments; SR-performed some of the experiments; AN-conceptualized the designed most of the experiments. PG and AN-wrote the manuscript, which has been further modified and approved by all authors.

Corresponding author

Correspondence to Ashis Kumar Nandi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 814 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Roy, S. & Nandi, A.K. MEDEA-interacting protein LONG-CHAIN BASE KINASE 1 promotes pattern-triggered immunity in Arabidopsis thaliana. Plant Mol Biol 103, 173–184 (2020). https://doi.org/10.1007/s11103-020-00982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-00982-4

Keywords

Navigation