Skip to main content
Log in

Profiling methyl jasmonate-responsive transcriptome for understanding induced systemic resistance in whitebark pine (Pinus albicaulis)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

RNA-seq analysis on whitebark pine needles demonstrated that methyl jasmonate (MeJA)-triggered transcriptome re-programming substantially overlapped with defense responses against insects and fungal pathogens in Pinus species, increasing current knowledge regarding induced systemic resistance (ISR) to pathogens and pests in whitebark pine.

Abstract

Many whitebark pine populations are in steep decline due to high susceptibility to mountain pine beetle and the non-native white pine blister rust (WPBR). Resistance, including induced systemic resistance (ISR), is not well characterized in whitebark pine, narrowing the current options for increasing the success of restoration and breeding programs. Exogenous jasmonates are known to trigger ISR by activating the plant’s immune system through regulation of gene expression to produce chemical defense compounds. This study reports profiles of whitebark pine needle transcriptomes, following methyl jasmonate (MeJA) treatment using RNA-seq. A MeJA-responsive transcriptome was de novo assembled and transcriptome profiling identified a set of differentially expressed genes (DEGs), revealing 1422 up- and 999 down-regulated transcripts with at least twofold change (FDR corrected p < 0.05) in needle tissues in response to MeJA application. GO analysis revealed that these DEGs have putative functions in plant defense signalling, transcription regulation, biosyntheses of secondary metabolites, and other biological processes. Lineage-specific expression of defense-related genes was characterized through comparison with MeJA signalling in model plants. In particular, MeJA-triggered transcriptome re-programming substantially overlapped with defense responses against WPBR and insects in related Pinus species, suggesting that MeJA may be used to improve whitebark pine resistance to pathogens/pests. Our study provides new insights into molecular mechanisms and metabolic pathways involved in whitebark pine ISR. DEGs identified in this study can be used as candidates to facilitate identification of genomic variation contributing to host resistance and aid in breeding selection of elite genotypes with better adaptive fitness to environmental stressors in this endangered tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302

    Article  CAS  PubMed  Google Scholar 

  • Antico CJ, Colon C, Banks T, Ramonell KM (2012) Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front Biol 7:48–56

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ethylene response factor1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos ML, Kang J-H, Howe GA (2014) Jasmonate-triggered plant immunity. J Chem Ecol 40:657–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Coolen S, Proietti S, Hickman R, Davila Olivas NH, Huang PP, Van Verk MC, Van Pelt JA, Wittenberg AH, De Vos M, Prins M, Van Loon JJ, Aarts MG, Dicke M, Pieterse CM, Van Wees SC (2016) Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. Plant J 86:249–267

    Article  CAS  PubMed  Google Scholar 

  • De Vleesschauwer D, Xu J, Hofte M (2014) Making sense of hormone-mediated defense networking: from rice to Arabidopsis. Front Plant Sci 5:611

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Chen F, Guo D, Parvathi K (2001) The biosynthesis of monolignols: a “metabolic grid”, or independent pathways to guaiacyl and syringyl units? Phytochemistry 57:1069–1084

    Article  CAS  PubMed  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Erbilgin N, Krokene P, Christiansen E, Zeneli G, Gershenzon J (2006) Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus. Oecologia 148:426–436

    Article  PubMed  Google Scholar 

  • Faccoli M, Schlyter F (2007) Conifer phenolic resistance markers are bark beetle antifeedant semiochemicals. Agric For Entomol 9:237–245

    Article  Google Scholar 

  • Fäldt J, Martin D, Miller B, Rawat S, Bohlmann J (2003) Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol Biol 51:119–133

    Article  PubMed  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    Article  CAS  PubMed  Google Scholar 

  • Franceschi VR, Krekling T, Christiansen E (2002) Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am J Bot 89:578–586

    Article  CAS  PubMed  Google Scholar 

  • Gordy JW, Leonard BR, Blouin D, Davis JA, Stout MJ (2015) Comparative effectiveness of potential elicitors of plant resistance against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in four crop plants. PLoS ONE 10:e0136689

    Article  PubMed  PubMed Central  Google Scholar 

  • Gou X, He K, Yang H, Yuan T, Lin H, Clouse SD, Li J (2010) Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genom 11:19

    Article  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  • Hickman RJ, Van Verk MC, Van Dijken AJH, Mendes MP, Vosm IA, Caarls L, Steenbergen M, Nagel IVD, Wesselink GJ, Jironkin A, Talbot A, Rhodes J, Vries MD, Schuurink RC, Denby KJ, Pieterse CMEJA, Saskia Van Wees SV (2016) Architecture and dynamics of the jasmonic acid gene regulatory network. bioRxiv093682

  • Huang P-Y, Catinot J, Zimmerli L (2015) Ethylene response factors in Arabidopsis immunity. J Exp Bot 67:1231–1241

    Article  PubMed  Google Scholar 

  • Hudgins JW, Franceschi VR (2004) Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiol 135:2134–2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jewett JT, Lawrence RL, Marshall LA, Gessler PE, Powell SL, Shannon SL (2011) Spatiotemporal relationships between climate and whitebark pine mortality in the greater yellowstone ecosystem. For Sci 57:320–335

    Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  PubMed  Google Scholar 

  • Kirisits T (2004) Fungal associates of European bark beetles with special emphasis on ophiostomatoid fungi. In: Lieutier F, Day KR, Battisti A, Grégoire J-C, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Dordrecht, pp 181–236

    Chapter  Google Scholar 

  • Kovalchuk A, Raffaello T, Jaber E, Keriö S, Ghimire R, Lorenz W, Dean JFD, Holopainen JK, Asiegbu FO (2015) Activation of defence pathways in Scots pine bark after feeding by pine weevil (Hylobius abietis). BMC Genom 16:352

    Article  Google Scholar 

  • Krokene P, Nagy NE, Solheim H (2008) Methyl jasmonate and oxalic acid treatment of Norway spruce: anatomically based defense responses and increased resistance against fungal infection. Tree Physiol 28:29–35

    Article  CAS  PubMed  Google Scholar 

  • Kuśnierczyk A, Tran DHT, Winge P, Jørstad TS, Reese JC, Troczyńska J, Bones AM (2011) Testing the importance of jasmonate signalling in induction of plant defences upon cabbage aphid (Brevicoryne brassicae) attack. BMC Genom 12:423

    Article  Google Scholar 

  • Landguth EL, Holden ZA, Mahalovich MF, Cushman SA (2017) Using landscape genetics simulations for planting blister rust resistant whitebark pine in the US Northern Rocky Mountains. Front Genet 8:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Lind BM, Friedline CJ, Wegrzyn JL, Maloney PE, Vogler DR, Neale DB, Eckert AJ (2017) Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Englm.) across fine spatial scales of the Lake Tahoe Basin, USA. Mol Ecol. doi:10.1111/mec.14106

    PubMed  Google Scholar 

  • Liu J-J, Ekramoddoullah AK, Yu X (2003) Differential expression of multiple PR10 proteins in western white pine following wounding, fungal infection and cold-hardening. Physiol Plant 119:544–553

    Article  CAS  Google Scholar 

  • Liu J-J, Ekramoddoullah AK, Zamani A (2005) A class IV chitinase is up-regulated by fungal infection and abiotic stresses and associated with slow-canker-growth resistance to Cronartium ribicola in western white pine (Pinus monticola). Phytopathology 95:284–291

    Article  CAS  PubMed  Google Scholar 

  • Liu J-J, Sniezko RA, Ekramoddoullah AKM (2011) Association of a novel Pinus monticola chitinase gene (PmCh4B) with quantitative resistance to Cronartium ribicola. Phytopathology 101:904–911

    Article  CAS  PubMed  Google Scholar 

  • Liu J-J, Hammett C, Sniezko RA (2013a) Pinus monticola pathogenesis-related gene PmPR10-2 alleles as defense candidates for stem quantitative disease resistance against white pine blister rust (Cronartium ribicola). Tree Genet Genomes 9:397–408

    Article  Google Scholar 

  • Liu J-J, Sturrock RN, Benton R (2013b) Transcriptome analysis of Pinus monticola primary needles by RNA-seq provides novel insight into host resistance to Cronartium ribicola. BMC Genom 14:884

    Article  Google Scholar 

  • Liu J-J, Zamany A, Sniezko RA (2013c) Anti-microbial peptide (AMP): nucleotide variation, gene expression, and host resistance in the white pine blister rust (WPBR) pathosystem. Planta 237:43–54

    Article  CAS  PubMed  Google Scholar 

  • Liu J-J, Sniezko RA, Sturrock RN, Chen H (2014) Western white pine SNP discovery and high-throughput genotyping for breeding and conservation applications. BMC Plant Biol 14:1586

    Google Scholar 

  • Liu J-J, Sniezko R, Murray M, Wang N, Chen H, Zamany A, Sturrock RN, Savin D, Kegley A (2016) Genetic diversity and population structure of whitebark pine (Pinus albicaulis Engelm.) in western North America. PLoS ONE 11:e0167986

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J-J, Sniezko RA, Zamany A, Williams H, Wang N, Kegley A, Savin DP, Chen H, Sturrock RN (2017) Saturated genic SNP mapping identified functional candidates and selection tools for the Pinus monticola Cr2 locus controlling resistance to white pine blister rust. Plant Biotechnol J 15:1149–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan JA, Macfarlane WW, Willcox L (2010) Whitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the greater yellowstone ecosystem. Ecol Appl 20:895–902

    Article  PubMed  Google Scholar 

  • Mata-Perez C, Sanchez-Calvo B, Begara-Morales JC, Luque F, Jimenez-Ruiz J, Padilla MN, Fierro-Risco J, Valderrama R, Fernandez-Ocana A, Corpas FJ, Barroso JB (2015) Transcriptomic profiling of linolenic acid-responsive genes in ROS signaling from RNA-seq data in Arabidopsis. Front Plant Sci 6:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memelink J (2009) Regulation of gene expression by jasmonate hormones. Phytochemistry 70:1560–1570

    Article  CAS  PubMed  Google Scholar 

  • Men L, Yan S, Liu G (2013) De novo characterization of Larix gmelinii (Rupr.) Rupr. transcriptome and analysis of its gene expression induced by jasmonates. BMC Genom 14:548

    Article  CAS  Google Scholar 

  • Miller B, Madilao LL, Ralph S, Bohlmann J (2005) Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol 137:369–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore BD, Andrew RL, Külheim C, Foley WJ (2014) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201:733–750

    Article  PubMed  Google Scholar 

  • Moreira X, Sampedro L, Zas R (2009) Defensive responses of Pinus pinaster seedlings to exogenous application of methyl jasmonate: concentration effect and systemic response. Environ Exp Bot 67:94–100

    Article  CAS  Google Scholar 

  • Nahar K, Kyndt T, De Vleesschauwer D, Höfte M, Gheysen G (2011) The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiol 157:305–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandety RS, Caplan JL, Cavanaugh K, Perroud B, Wroblewski T, Michelmore RW, Meyers BC (2013) The role of TIR-NBS and TIR-X proteins in plant basal defense responses. Plant Physiol 162:1459–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panstruga R, Parker JE, Schulze-Lefert P (2009) SnapShot: plant immune response pathways. Cell 136:978.e1–978.e3

    Article  Google Scholar 

  • Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, Boerjan W, Inzé D, Goossens D (2008) Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci USA 105:1380–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwelsa L, Goossensa A (2011) The JAZ Proteins—a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    Article  Google Scholar 

  • Piggott N, Ekramoddoullah AK, Liu J-J, Yu X (2004) Gene cloning of a thaumatin-like (PR-5) protein of western white pine (Pinus monticola D. Don) and expression studies of members of the PR-5 group. Physiol Mol Plant Pathol 64:1–8

    Article  CAS  Google Scholar 

  • Resler LM, Tomback DF (2008) Blister rust prevalence in krummholz whitebark pine: implications for treeline dynamics, northern Rocky Mountains, Montana, U.S.A. Arct Antarct Alp Res 40:161–170

    Article  Google Scholar 

  • Six D, Wingfield MJ (2011) The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. Annu Rev Entomol 56:255–272

    Article  CAS  PubMed  Google Scholar 

  • Sniezko RA, Kegley A, Danchok R (2012) White pine blister rust resistance in Pinus monticola and P. albicaulis in the Pacific Northwest U.S.: a tale of two species, pp 262–266. In: Sniezko RA, Yanchuk AD, Kliejunas JT, Palmieri KM, Alexander JM, Frankel SJ (eds) Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: disease and insect resistance in forest trees. Gen Tech Rep PSW-GTR-240. USDA Forest Service, Pacific Southwest Research Station, CA, p 372

  • Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, Cardeno C, Paul R et al (2016) Sequence of the sugar pine megagenome. Genetics 204:1613–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208

    Article  CAS  PubMed  Google Scholar 

  • Sun G, Yang Y, Xie F, Wen J-F, Wu J, Wilson IW, Tang Q, Liu H, Qiu D (2013) Deep sequencing reveals transcriptome re-programming of Taxus × media cells to the elicitation with methyl jasmonate. PLoS ONE 8(4):e62865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Tomback DF, Arno SF, Keane RE (2001) The compelling case for management intervention, p 3–25. In: Tomback DF, Arno SF, Keane RE (eds) Whitebark pine communities: ecology and restoration. Island Press, Washington, D.C., p 440

    Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:S153-S164

    Article  PubMed Central  Google Scholar 

  • Verma SS, Yajima WR, Rahman MH, Shah S, Liu J-J, Ekramoddoullah AK, Kav NNV (2012) A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus). Plant Mol Biol 79:61–74

    Article  CAS  PubMed  Google Scholar 

  • Wadke N, Kandasamy D, Vogel H, Lah L, Wingfield BD, Paetz C, Wright LP, Gershenzon J, Hammerbacher A (2016) The bark-beetle-associated fungus, Endoconidiophora polonica, utilizes the phenolic defense compounds of its host as a carbon source. Plant Physiol 171:914–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C (2014) Action of jasmonates in plant stress responses and development—applied aspects. Biotechnol Adv 32:31–39

    Article  CAS  PubMed  Google Scholar 

  • Wegrzyn JL, Liechty JD, Stevens KA, Wu L-S, Loopstra CA, Vasquez-Gross HA, Dougherty WM, Lin BY, Zieve JJ, Martínez-García PJ, Holt C, Yandell M, Zimin AV, Yorke JA, Crepeau MW, Puiu D, Salzberg SL, Dejong PJ, Mockaitis K, Main D, Langley CH, Neale DB (2014) Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 196:891–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Yang W, Tang F, Chen X, Ren L (2015) Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem 22:132–149

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Xie D (2015) Jasmonate in plant defence: sentinel or double agent? Plant Biotechnol J 13:1233–1240

    Article  PubMed  Google Scholar 

  • Zamany A, Liu J-J, Ekramoddoullah A, Sniezko R (2011) Antifungal activity of a Pinus monticola antimicrobial peptide 1 (Pm-AMP1) and its accumulation in western white pine infected with Cronartium ribicola. Can J Microbiol 57:667–679

    Article  CAS  PubMed  Google Scholar 

  • Zas R, Björklund N, Nordlander G, Cendan C, Hellqvist C, Sampedro L (2014) Exploiting jasmonate-induced responses for field protection of conifer seedlings against a major forest pest, Hylobius abietis. Forest Ecol Manag 313:212–223

    Article  Google Scholar 

  • Zeneli G, Krokene P, Christiansen E, Krekling T, Gershenzon J (2006) Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiol 26:977–988

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Krokene P, Björklund N, Långström B, Solheim H, Christiansen E, Borg-Karlson A-K (2010) The influence of Ceratocystis polonica inoculation and methyl jasmonate application on terpene chemistry of Norway spruce, Picea abies. Phytochemistry 71:1332–1341

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Borg-Karlson A-K, Erbilgin N, Krokene P (2011) Host resistance elicited by methyl jasmonate reduces emission of aggregation pheromones by the spruce bark beetle, Ips typographus. Oecologia 167:691–699

    Article  PubMed  Google Scholar 

  • Zulak KG, Bohlmann J (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integr Plant Biol 52:86–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Gary Zhang and Aimin Guan at CFS for computer programming and bioinformatics analyses, and to Andrew Dyk at CFS for photographing. This work was financially supported in part by the CFS-GRDI fund and CFS-PFC DG’s fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J-JL, AWS and RAS conceived the project. J-J L and HW designed the experiments. MM provided plant materials. HW, XRL, AZ, and GR performed the experiments. J-JL, HW, XRL, and HC performed the bioinformatics of the transcriptome and the statistical analyses of the experimental data. J-JL interpreted the data and wrote the manuscript. J-JL, HW, MM, AWS, RAS, and AZ edited the manuscript.

Corresponding author

Correspondence to Jun-Jun Liu.

Additional information

The raw Illumina RNA-seq 100-bp PE sequences of WBP needle samples were deposited in the NCBI under BioProject ID: PRJNA352055. This Transcriptome Shotgun Assembly project has been registered at DDBJ/EMBL/GenBank under the accession GFLL00000000.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2017_655_MOESM1_ESM.xlsx

Figure S1: Pearson’s correlation analysis to evaluate variations in transcript levels detected by RNA-seq analysis among biological repeats of whitebark pine. Pearson’s correlation coefficient was calculated between biological repeats at each time point based on the RPKM data. Here present the correlations for two comparisons (sample_1 vs. sample_2, sample_1 vs. sample_3) at day 0, day 1, day 2, and day 4 post MeJA treatment. Correlations between sample_2 and sample_3 at these time points were in a similar range

Supplementary material 1 (XLSX 37 KB)

11103_2017_655_MOESM2_ESM.xlsx

Figure S2: Regression analysis comparing fold changes of transcript expression as estimated by qRT-PCR and RNA-seq (r = 0.9533, p < 0.00001)

Supplementary material 2 (XLSX 183 KB)

Supplementary material 3 (BMP 4641 KB)

Supplementary material 4 (BMP 2722 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JJ., Williams, H., Li, X.R. et al. Profiling methyl jasmonate-responsive transcriptome for understanding induced systemic resistance in whitebark pine (Pinus albicaulis). Plant Mol Biol 95, 359–374 (2017). https://doi.org/10.1007/s11103-017-0655-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0655-z

Keywords

Navigation