Skip to main content
Log in

Bacterial production and reconstitution in proteoliposomes of Solanum lycopersicum CAT2: a transporter of basic amino acids and organic cations

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

The vacuolar SlCAT2 was cloned, over-produced in E. coli and reconstituted in proteoliposomes. Arg, Ornithine and Lys were identified as substrates. Unexpectedly, also the organic cations Tetraethylammonium and Acetylcholine were transported indicating involvement of SlCAT2 in signaling.

Abstract

In land plants several transporters are involved in ion and metabolite flux across membranes of cells or intracellular organelles. The vacuolar amino acid transporter CAT2 from Solanum lycopersicum was investigated in this work. SlCAT2 was cloned from tomato flower cDNA, over-produced in Escherichia coli and purified by Nichel-chelating chromatography. For functional studies, the transporter was reconstituted in proteoliposomes. Competence of SlCAT2 for Arg transport was demonstrated measuring uptake of [3H]Arg in proteoliposomes which was trans-stimulated by internal Arg or ornithine. Uptake of [3H]Ornithine and [3H]Lys was also detected at lower efficiency with respect to [3H]Arg. Transport was activated by the presence of intraliposomal ATP suggesting regulation by the nucleotide. The prototype for organic cations tetraethylammonium (TEA) was also transported by SlCAT2. However, scarce reciprocal inhibition between TEA and Arg was found, while the biguanide metformin was able to strongly inhibit uptake of both substrates. These findings suggest that amino acids and organic cations may interact with the transporter through different functional groups some of which are common for the two types of substrates. Interestingly, reconstituted SlCAT2 showed competence for acetylcholine transport, which was also inhibited by metformin. Kinetics of Arg and Ach transport were performed from which Km values of 0.29 and 0.79 mM were derived, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Broer A, Rahimi F, Broer S (2016) Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. J Biol Chem 291:13194–13205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang AB, Lin R, Keith Studley W, Tran CV, Saier MH Jr (2004) Phylogeny as a guide to structure and function of membrane transport proteins. Mol Membr Biol 21:171–181

    Article  CAS  PubMed  Google Scholar 

  • Di Sansebastiano GP, Fornaciari S, Barozzi F, Piro G, Arru L (2014) New insights on plant cell elongation: a role for acetylcholine. Int J Mol Sci 15:4565–4582

    Article  PubMed  PubMed Central  Google Scholar 

  • Dietz KJ, Martinoia E, Heber U (1989) Mobilization of Vacuolar amino-acids in leaf-cells as affected by ATP and the level of cytosolic amino-acids—ATP regulates but appears not to energize vacuolar amino-acid release. Biochim Biophys Acta 984:57–62

    Article  CAS  Google Scholar 

  • Eggen T, Lillo C (2012) Antidiabetic II drug metformin in plants: uptake and translocation to edible parts of cereals, oily seeds, beans, tomato, squash, carrots, and potatoes. J Agric Food Chem 60:6929–6935

    Article  CAS  PubMed  Google Scholar 

  • Etxeberria E, Pozueta-Romero J, Gonzalez P (2012) In and out of the plant storage vacuole. Plant Sci 190:52–61

    Article  CAS  PubMed  Google Scholar 

  • Frommer WB, Hummel S, Unseld M, Ninnemann O (1995) Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis. Proc Natl Acad Sci USA 92:12036–12040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giangregorio N, Console L, Tonazzi A, Palmieri F, Indiveri C (2014) Identification of amino acid residues underlying the antiport mechanism of the mitochondrial carnitine/acylcarnitine carrier by site-directed mutagenesis and chemical labeling. Biochemistry 44:6924–6933

    Article  Google Scholar 

  • Haferkamp I, Linka N (2012) Functional expression and characterisation of membrane transport proteins Plant Biol 14:675–690

    Article  CAS  PubMed  Google Scholar 

  • Hammes UZ, Nielsen E, Honaas LA, Taylor CG, Schachtman DP (2006) AtCAT6, a sink-tissue-localized transporter for essential amino acids in Arabidopsis. Plant J 48:414–426

    Article  CAS  PubMed  Google Scholar 

  • Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, Jang S, Yim S, Lee E, Khare D, Kim K, Palmgren M, Yoon HS, Martinoia E, Lee Y (2016) Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant 9:338–355

    Article  CAS  PubMed  Google Scholar 

  • Indiveri C, Prezioso G, Dierks T, Kramer R, Palmieri F (1993) Kinetic characterization of the reconstituted dicarboxylate carrier from mitochondria: a four-binding-site sequential transport system. Biochim Biophys Acta 1143:310–318

    Article  CAS  PubMed  Google Scholar 

  • Indiveri C, Galluccio M, Scalise M, Pochini L (2013) Strategies of bacterial over expression of membrane transporters relevant in human health: the successful case of the three members of OCTN subfamily. Mol Biotechnol 54:724–736

    Article  CAS  PubMed  Google Scholar 

  • Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieu V, Bruley C, Garin J, Bourguignon J (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteom 6:394–412

    Article  CAS  Google Scholar 

  • Kumar V, Sharma A, Kaur R, Thukral AK, Bhardwaj R, Ahmad P (2017) Differential distribution of amino acids in plants. Amino Acids 49:821–869

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Thume M, Vogt E, Rentsch D, Dietz KJ (1991) Transport of arginine and aspartic Acid into isolated barley mesophyll vacuoles. Plant Physiol 97:644–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinoia E, Meyer S, De Angeli A, Nagy R (2012) Vacuolar transporters in their physiological context. Annu Rev Plant Biol 63:183–213

    Article  CAS  PubMed  Google Scholar 

  • Napolitano L, Scalise M, Galluccio M, Pochini L, Albanese LM, Indiveri C (2015) LAT1 is the transport competent unit of the LAT1/CD98 heterodimeric amino acid transporter. Int J Biochem Cell Biol 67:25–33

    Article  CAS  PubMed  Google Scholar 

  • Newstead S, Kim H, von Heijne G, Iwata S, Drew D (2007) High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:13936–13941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okumoto S, Pilot G (2011) Amino acid export in plants: a missing link in nitrogen cycling. Mol Plant 4:453–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oppedisano F, Pochini L, Galluccio M, Indiveri C (2007) The glutamine/amino acid transporter (ASCT2) reconstituted in liposomes: transport mechanism, regulation by ATP and characterization of the glutamine/glutamate antiport. Biochim Biophys Acta 1768:291–298

    Article  CAS  PubMed  Google Scholar 

  • Pochini L, Scalise M, Galluccio M, Amelio L, Indiveri C (2011) Reconstitution in liposomes of the functionally active human OCTN1 (SLC22A4) transporter overexpressed in Escherichia coli. Biochem J 439:227–233

    Article  CAS  PubMed  Google Scholar 

  • Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289

    Article  CAS  PubMed  Google Scholar 

  • Rotoli BM, Closs EI, Barilli A, Visigalli R, Simon A, Habermeier A, Bianchi N, Gambari R, Gazzola GC, Bussolati O, Dall’Asta V (2009) Arginine transport in human erythroid cells: discrimination of CAT1 and 4F2hc/y+ LAT2 roles. Pflug Arch 458:1163–1173

    Article  CAS  Google Scholar 

  • Scalise M, Pochini L, Giangregorio N, Tonazzi A, Indiveri C (2013) Proteoliposomes as tool for assaying membrane transporter functions and interactions with xenobiotics. Pharmaceutics 5:472–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flügge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwacke R, Flügge UI, Kunze R (2004) Plant membrane proteome databases. Plant Physiol Biochem 42:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Su YH, Frommer WB, Ludewig U (2004) Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. Plant Physiol 136:3104–3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tegeder M (2012) Transporters for amino acids in plant cells: some functions and many unknowns. Curr Opin Plant Biol 15:315–321

    Article  CAS  PubMed  Google Scholar 

  • Torchetti EM, Bonomi F, Galluccio M, Gianazza E, Giancaspero TA, Iametti S, Indiveri C, Barile M (2011) Human FAD synthase (isoform 2): a component of the machinery that delivers FAD to apo-flavoproteins. FEBS J 278:4434–4449

    Article  PubMed  Google Scholar 

  • Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Hogbom M, van Wijk KJ, Slotboom DJ, Persson JO, de Gier JW (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci USA 105:14371–14376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wessler I, Kirkpatrick CJ (2008) Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 154:1558–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wessler I, Kirkpatrick CJ, Racke K (1999) The cholinergic ‘pitfall’: acetylcholine, a universal cell molecule in biological systems, including humans. Clin Exp Pharmacol Physiol 26:198–205

    Article  CAS  PubMed  Google Scholar 

  • Wessler I, Kilbinger H, Bittinger F, Kirkpatrick CJ (2001) The biological role of non-neuronal acetylcholine in plants and humans. Jpn J Pharmacol 85:2–10

    Article  CAS  PubMed  Google Scholar 

  • Wong FH, Chen JS, Reddy V, Day JL, Shlykov MA, Wakabayashi ST, Saier MH Jr (2012) The amino acid-polyamine-organocation superfamily. J Mol Microbiol Biotechnol 22:105–113

    Article  PubMed  Google Scholar 

  • Yang YW, Yang LT, Li ZG (2013) Molecular cloning and identification of a putative tomato cationic amino acid transporter-2 gene that is highly expressed in stamens. Plant Cell Tissue Organ Cult 112:55–63

    Article  CAS  Google Scholar 

  • Yang H, Krebs M, Stierhof YD, Ludewig U (2014) Characterization of the putative amino acid transporter genes AtCAT2, 3 & 4: the tonoplast localized AtCAT2 regulates soluble leaf amino acids. J Plant Physiol 171:594–601

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by founds from: Programma Operativo Nazionale 01_00937—MIUR “Modelli sperimentali Biotecnologici integrati per lo sviluppo e la selezione di molecole di interesse per la salute dell’uomo”.

Author information

Authors and Affiliations

Authors

Contributions

TMRR identified and cloned SlCAT2; TMRR and MG produced SlCAT2 in E. coli; MS and LP performed transport assays; CI supervised the entire work; CI, TMRR, MS and MG wrote the paper.

Corresponding author

Correspondence to Cesare Indiveri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regina, T.M.R., Galluccio, M., Scalise, M. et al. Bacterial production and reconstitution in proteoliposomes of Solanum lycopersicum CAT2: a transporter of basic amino acids and organic cations. Plant Mol Biol 94, 657–667 (2017). https://doi.org/10.1007/s11103-017-0632-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0632-6

Keywords

Navigation