Skip to main content
Log in

Arginine transport in human erythroid cells: discrimination of CAT1 and 4F2hc/y+LAT2 roles

  • Transport Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Since arginine metabolites, such as nitric oxide and polyamines, influence the expression of genes involved in erythroid differentiation, the transport of the cationic amino acid may play an important role in erythroid cells. However, available data only concern the presence in these cells of CAT1 transporter (system y+), while no information exists on the role of the heterodimeric transporters of system y+L (4F2hc/y+LAT1 and 4F2hc/y+LAT2) which operates transmembrane arginine fluxes cis-inhibited by neutral amino acids in the presence of sodium. Using erythroleukemia K562 cells and normal erythroid precursors, we demonstrate here that arginine transport in human erythroid cells is due to the additive contributions of a leucine-sensitive and leucine-insensitive component. In both cell types, leucine inhibition of arginine influx is much less evident in the absence of sodium, a hallmark of system y+L. In K562 cells, N-ethylmaleimide, a known inhibitor of CAT transporters (system y+), suppresses only a fraction of arginine influx corresponding to leucine-insensitive uptake. Moreover, in Xenopus oocytes coexpressing 4F2hc and y+LAT2, leucine exerts a marked inhibition of arginine transport, partially dependent on sodium, while no inhibition is seen in oocytes expressing CAT1. Lastly, silencing of SLC7A6, the gene for y+LAT2, lowers arginine transport and doubles the intracellular content of the cationic amino acid in K562 cells. We conclude that arginine transport in human erythroid cells is due to both system y+ (CAT1 transporter) and system y+L (4F2hc/y+LAT2 isoform), which mainly contribute, respectively, to the influx and to the efflux of the cationic amino acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAA:

Cationic amino acids

CAT:

Cationic amino acid transporter

NEM:

N-Ethylmaleimide

PBS:

Phosphate-buffered saline

References

  1. Almeida PB, Pinheiro da Costa BE, Figueiredo AE, Conti A, Alves SL, d'Avila DO, Poli de Figueiredo CE (2007) Erythrocyte L-arginine uptake in peritoneal dialysis patients changes over time. Adv Perit Dial 23:48–50

    PubMed  CAS  Google Scholar 

  2. Broer A, Wagner CA, Lang F, Broer S (2000) The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem J 349(Pt 3):787–795

    PubMed  CAS  Google Scholar 

  3. Broer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88:249–286

    Article  PubMed  CAS  Google Scholar 

  4. Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P (2003) L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 24:302–306

    Article  PubMed  CAS  Google Scholar 

  5. Chasis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112:470–478

    Article  PubMed  CAS  Google Scholar 

  6. Choi BS, Martinez-Falero IC, Corset C, Munder M, Modolell M, Muller I, Kropf P (2009) Differential impact of L-arginine deprivation on the activation and effector functions of T cells and macrophages. J Leukoc Biol 85:268–277

    Article  PubMed  CAS  Google Scholar 

  7. Cokic VP, Andric SA, Stojilkovic SS, Noguchi CT, Schechter AN (2008) Hydroxyurea nitrosylates and activates soluble guanylyl cyclase in human erythroid cells. Blood 111:1117–1123

    Article  PubMed  CAS  Google Scholar 

  8. Cokic VP, Smith RD, Beleslin-Cokic BB, Njoroge JM, Miller JL, Gladwin MT, Schechter AN (2003) Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase. J Clin Invest 111:231–239

    PubMed  CAS  Google Scholar 

  9. Dall'Asta V, Bussolati O, Sala R, Parolari A, Alamanni F, Biglioli P, Gazzola GC (1999) Amino acids are compatible osmolytes for volume recovery after hypertonic shrinkage in vascular endothelial cells. Am J Physiol 276:C865–C872

    PubMed  Google Scholar 

  10. Dall'Asta V, Bussolati O, Sala R, Rotoli BM, Sebastio G, Sperandeo MP, Andria G, Gazzola GC (2000) Arginine transport through system y(+)L in cultured human fibroblasts: normal phenotype of cells from LPI subjects. Am J Physiol Cell Physiol 279:C1829–C1837

    PubMed  Google Scholar 

  11. Deves R, Angelo S, Chavez P (1993) N-Ethylmaleimide discriminates between two lysine transport systems in human erythrocytes. J Physiol 468:753–766

    PubMed  CAS  Google Scholar 

  12. Deves R, Boyd CA (1998) Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev 78:487–545

    PubMed  CAS  Google Scholar 

  13. Deves R, Chavez P, Boyd CA (1992) Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity. J Physiol 454:491–501

    PubMed  CAS  Google Scholar 

  14. Fibach E, Bianchi N, Borgatti M, Prus E, Gambari R (2003) Mithramycin induces fetal hemoglobin production in normal and thalassemic human erythroid precursor cells. Blood 102:1276–1281

    Article  PubMed  CAS  Google Scholar 

  15. Gambari R, Fibach E (2007) Medicinal chemistry of fetal hemoglobin inducers for treatment of beta-thalassemia. Curr Med Chem 14:199–212

    Article  PubMed  CAS  Google Scholar 

  16. Haynes J Jr, Baliga BS, Obiako B, Ofori-Acquah S, Pace B (2004) Zileuton induces hemoglobin F synthesis in erythroid progenitors: role of the L-arginine–nitric oxide signaling pathway. Blood 103:3945–3950

    Article  PubMed  CAS  Google Scholar 

  17. Ikuta T, Ausenda S, Cappellini MD (2001) Mechanism for fetal globin gene expression: role of the soluble guanylate cyclase–cGMP-dependent protein kinase pathway. Proc Natl Acad Sci U S A 98:1847–1852

    Article  PubMed  CAS  Google Scholar 

  18. Kern RM, Yang Z, Kim PS, Grody WW, Iyer RK, Cederbaum SD (2007) Arginase induction by sodium phenylbutyrate in mouse tissues and human cell lines. Mol Genet Metab 90:37–41

    Article  PubMed  CAS  Google Scholar 

  19. Kleinbongard P, Schulz R, Rassaf T, Lauer T, Dejam A, Jax T, Kumara I, Gharini P, Kabanova S, Ozuyaman B, Schnurch HG, Godecke A, Weber AA, Robenek M, Robenek H, Bloch W, Rosen P, Kelm M (2006) Red blood cells express a functional endothelial nitric oxide synthase. Blood 107:2943–2951

    Article  PubMed  CAS  Google Scholar 

  20. Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45:321–334

    PubMed  CAS  Google Scholar 

  21. Maeda T, Wakasawa T, Shima Y, Tsuboi I, Aizawa S, Tamai I (2006) Role of polyamines derived from arginine in differentiation and proliferation of human blood cells. Biol Pharm Bull 29:234–239

    Article  PubMed  CAS  Google Scholar 

  22. Peller S, Tabach Y, Rotschild M, Garach-Joshua O, Cohen Y, Goldfinger N, Rotter V (2009) Identification of gene networks associated with erythroid differentiation. Blood Cells Mol Dis 43:74–80

    Article  PubMed  CAS  Google Scholar 

  23. Perkins CP, Mar V, Shutter JR, del Castillo J, Danilenko DM, Medlock ES, Ponting IL, Graham M, Stark KL, Zuo Y, Cunningham JM, Bosselman RA (1997) Anemia and perinatal death result from loss of the murine ecotropic retrovirus receptor mCAT-1. Genes Dev 11:914–925

    Article  PubMed  CAS  Google Scholar 

  24. Rotmann A, Closs EI, Liewald JF, Nawrath H (2004) Intracellular accumulation of L-Arg, kinetics of transport, and potassium leak conductance in oocytes from Xenopus laevis expressing hCAT-1, hCAT-2A, and hCAT-2B. Biochim Biophys Acta 1660:138–143

    Article  PubMed  CAS  Google Scholar 

  25. Rotoli BM, Bussolati O, Sala R, Barilli A, Talarico E, Gazzola GC, Dall'Asta V (2004) INFgamma stimulates arginine transport through system y+L in human monocytes. FEBS Lett 571:177–181

    Article  PubMed  CAS  Google Scholar 

  26. Rotoli BM, Bussolati O, Sala R, Gazzola GC, Dall'Asta V (2005) The transport of cationic amino acids in human airway cells: expression of system y+L activity and transepithelial delivery of NOS inhibitors. FASEB J 19:810–812

    PubMed  CAS  Google Scholar 

  27. Rotoli BM, Dall'asta V, Barilli A, D'Ippolito R, Tipa A, Olivieri D, Gazzola GC, Bussolati O (2007) Alveolar macrophages from normal subjects lack the NOS-related system y+ for arginine transport. Am J Respir Cell Mol Biol 37:105–112

    Article  PubMed  CAS  Google Scholar 

  28. Sala R, Rotoli BM, Colla E, Visigalli R, Parolari A, Bussolati O, Gazzola GC, Dall'Asta V (2002) Two-way arginine transport in human endothelial cells: TNF-alpha stimulation is restricted to system y(+). Am J Physiol Cell Physiol 282:C134–C143

    PubMed  CAS  Google Scholar 

  29. Shima Y, Maeda T, Aizawa S, Tsuboi I, Kobayashi D, Kato R, Tamai I (2006) L-Arginine import via cationic amino acid transporter CAT1 is essential for both differentiation and proliferation of erythrocytes. Blood 107:1352–1356

    Article  PubMed  CAS  Google Scholar 

  30. Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 447:532–542

    Article  PubMed  CAS  Google Scholar 

  31. Visigalli R, Barilli A, Bussolati O, Sala R, Gazzola GC, Parolari A, Tremoli E, Simon A, Closs EI, Dall'Asta V (2007) Rapamycin stimulates arginine influx through CAT2 transporters in human endothelial cells. Biochim Biophys Acta 1768:1479–1487

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the laboratory of E.I.C. was supported by grant Cl 100/4-3 from the Deutsche Forschungsgemeinschaft. Work in Parma was funded by FIL, University of Parma (O.B., V.D.A., G.C.G., B.M.R.), and by MIUR PRIN 2007BY3PLL_002 “Endothelial function and inflammatory stress: role of mTORkinase” to V.D.A. R.G is granted by Fondazione CARIPARO and by Telethon (GGP07257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovidio Bussolati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotoli, B.M., Closs, E.I., Barilli, A. et al. Arginine transport in human erythroid cells: discrimination of CAT1 and 4F2hc/y+LAT2 roles. Pflugers Arch - Eur J Physiol 458, 1163–1173 (2009). https://doi.org/10.1007/s00424-009-0692-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0692-9

Keywords

Navigation