Skip to main content
Log in

CBF2ACBF4B genomic region copy numbers alongside the circadian clock play key regulatory mechanisms driving expression of FR-H2 CBFs

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The C-Repeat Binding Factors (CBFs) are DNA-binding transcriptional activators that were identified using Arabidopsis thaliana. In barley, Hordeum vulgare, a cluster of CBF genes reside at FROST RESISTANCE-H2, one of two loci having major effects on winter-hardiness. FR-H2 was revealed in a population derived from the winter barley ‘Nure’ and the spring barley ‘Trèmois’. ‘Nure’ harbors two to three copies of CBF2A and CBF4B as a consequence of tandem iteration of the genomic region encompassing these genes whereas ‘Trèmois’ harbors single copies, and these copy number differences are associated with their transcript level differences. Here we explore further the relationship between FR-H2 CBF gene copy number and transcript levels using ‘Admire’, a winter barley accumulating FR-H2 CBF gene transcripts to very high levels, and a group of lines related to ‘Admire’ through descent. DNA blot hybridization indicated the CBF2A–CBF4B genomic region is present in 7–8 copies in ‘Admire’ and is highly variable in copy number across the lines related to ‘Admire’. At normal growth temperatures transcript levels of CBF12, CBF14, and CBF16 were higher in lines having greater CBF2A–CBF4B genomic region copy numbers than in lines having fewer copy numbers at peak expression level time points controlled by the circadian clock. Chromatin immunoprecipitation indicated CBF2 was at the CBF12 and CBF16 promoters at normal growth temperatures. These data support a scenario in which CBF2A–CBF4B genomic region copy numbers affect expression of other FR–H2 CBFs through a mechansim in which these other FR-H2 CBFs are activated by those in the copy number variable unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aldhous MC, Abu Bakar S, Prescott NJ, Palla R, Soo K, Mansfield JC et al (2010) Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn’s disease. Hum Mol Genet 19:4930–4938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidmen JG, Smith JA et al. (1993) In current protocols in molecular biology Greene Publishing Associates/Wiley, NY

    Google Scholar 

  • Badawi M, Danyluk J, Boucho B, Houde M, Sarhan F (2007) The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Mol Genet Genom 277:533–554

    Article  CAS  Google Scholar 

  • Campoli C, Matus-Cadiz MA, Pozniak CJ, Cattivelli L, Fowler DB (2009) Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Mol Genet Genom 282:141–152

    Article  CAS  Google Scholar 

  • Cantsilieris S, Baird PN, White SJ (2013) Molecular methods for genotyping complex copy number polymorphisms. Genomics 101:86–93

    Article  CAS  PubMed  Google Scholar 

  • Cantsilieris S, Western PS, Baird PN, White SJ (2014) Technical considerations for genotyping multi-allelic copy number variation (CNV), in regions of segmental duplication. BMC Genom 15:329

    Article  Google Scholar 

  • Cao H, Wu H, Luo R, Huang S, Sun Y, Tong X et al (2015) De novo assembly of a haplotype-resolved human genome. Nat Biotechnol 33:617–622

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho F, Boerjan W, Ingelbrecht I, Depicker A, Inze D, van Montagu M (1994) Post-transcriptional gene silencing in transgenic plants. In Coruzzi G, Puigdomènech P (eds) Plant molecular biology: molecular genetic analysis of plant development and metabolism, Vol. pp. 437–452. Springer, Berlin, New York

    Chapter  Google Scholar 

  • Deng W, Casao MC, Wang P, Sato K, Hayes PM, Finnegan EJ et al (2015) Direct links between the vernalization response and other key traits of cereal crops. Nat Commun 6:5882

    Article  PubMed  Google Scholar 

  • Dhillon T, Stockinger EJ (2013) Cbf14 copy number variation in the A, B, and D genomes of diploid and polyploid wheat. Theor Appl Genet 126:2777–2789

    Article  CAS  PubMed  Google Scholar 

  • Dhillon T, Pearce S, Stockinger E, Distelfeld A, Li C, Knox AK et al (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153:1846–1858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dong MA, Farre EM, Thomashow MF (2011) CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. Proc Natl Acad Sci USA 108:7241–7246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernando MM, Boteva L, Morris DL, Zhou B, Wu YL, Lokki ML et al (2010) Assessment of complement C4 gene copy number using the paralog ratio test. Hum Mutat 31:866–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 137:961–968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Francia E, Barabaschi D, Tondelli A, Laido G, Rizza F, Stanca AM et al (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Fricano A, Rizza F, Faccioli P, Pagani D, Pavan P, Stella A et al (2009) Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theor Appl Genet 119:1335–1348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  CAS  PubMed  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  PubMed  Google Scholar 

  • Jeknić Z, Pillman KA, Dhillon T, Skinner JS, Veisz O, Cuesta-Marcos A et al (2014) Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation. Plant Mol Biol 84:67–82

    Article  PubMed  Google Scholar 

  • Kidd JM, Cheng Z, Graves T, Fulton B, Wilson RK, Eichler EE (2008) Haplotype sorting using human fosmid clone end-sequence pairs. Genome Res 18:2016–2023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim UJ, Shizuya H, de Jong PJ, Birren B, Simon MI (1992) Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Res 20:1083–1085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim Y, Park S, Gilmour SJ, Thomashow MF (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75:364–376

    Article  CAS  PubMed  Google Scholar 

  • Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinger EJ (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121:21–35

    Article  PubMed  Google Scholar 

  • Kobayashi F, Takumi S, Kume S, Ishibashi M, Ohno R, Murai K et al (2005) Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat. J Exp Bot 56:887–895

    Article  CAS  PubMed  Google Scholar 

  • Lambert JW (1958) Registration of barley varieties, XIV. Agron J 50:708–711

    Article  Google Scholar 

  • Lichtenberg J, Yilmaz A, Kurz K, Liang X, Nelson C, Bitterman T et al. (2011) Encyclopedias of DNA elements for plant genomes. In: Elnitski L, Piontkivska H, Welch L (eds) Advances in genomic sequence analysis and pattern discovery, World Scientific Publishing Company, Hackensack, pp. 159–178

    Chapter  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K et al (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McClelland M, Nelson M, Raschke E (1994) Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 22:3640–3659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morohashi K, Xie Z, Grotewold E (2009) Gene-specific and genome-wide ChIP approaches to study plant transcriptional networks. Methods Mol Biol 553:3–12

    Article  CAS  PubMed  Google Scholar 

  • Morohashi K, Casas MI, Falcone Ferreyra ML, Mejia-Guerra MK, Pourcel L, Yilmaz A et al (2012) A genome-wide regulatory framework identifies maize pericarp color1 controlled genes. Plant Cell 24:2745–2764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A et al (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PS, Gausing K (1993) In vitro binding of nuclear proteins to the barley plastocyanin gene promoter region. Eur J Biochem 217:97–104

    Article  CAS  PubMed  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104:21002–21007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF (2015) Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J 82:193–207

    Article  CAS  PubMed  Google Scholar 

  • Pasquariello M, Barabaschi D, Himmelbach A, Steuernagel B, Ariyadasa R, Stein N et al (2014) The barley Frost resistance-H2 locus. Funct Integr Genom 14:85–100

    Article  CAS  Google Scholar 

  • Pennycooke JC, Cheng H, Roberts SM, Yang Q, Rhee SY, Stockinger EJ (2008) The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements. Plant Mol Biol 67:483–497

    Article  CAS  PubMed  Google Scholar 

  • Poehlman JM (1949) Agronomic characteristics and disease resistance of winter barleys tested in Missouri, 1943 to 1948. Res Bull Univ MO 442:28

    Google Scholar 

  • Poehlman JM and Cloninger CK (1955) Resistance to three barley smut diseases in Missouri Early Beardless strains. Agron J 47:243–246

    Article  Google Scholar 

  • Poehlman JM, Duclos L, and Kruse C (1973) Progress in development of two-row winter malting barley. In: Barley Improvement Conference. (ed.), Vol. pp. 15–21, Minneapolis, Minnesota

  • Skinner JS, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K et al (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533–551

    Article  CAS  PubMed  Google Scholar 

  • Skinner JS, Szucs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ et al (2006a) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112:832–842

    Article  CAS  PubMed  Google Scholar 

  • Skinner JS, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Szûcs P, Amundsen K et al. (2006b) Barley contains a large CBF gene family associated with quantitative cold tolerance traits. In: Chen THH, Uemura M, Fujikawa S (eds), Cold hardiness in plants: molecular genetics, cell biology and physiology CABI Publishing Oxon, UK Vol. pp. 30–52

    Google Scholar 

  • Soltész A, Smedley M, Vashegyi I, Galiba G, Harwood W, Vágújfalvi A (2013) Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. J Exp Bot 64:1849–1862

    Article  PubMed Central  PubMed  Google Scholar 

  • Stockinger EJ, Mulinix CA, Long CM, Brettin TS, Iezzoni AF (1996) A linkage map of sweet cherry based on RAPD analysis of a microspore- derived callus culture population. J Hered 87:214–218

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stockinger EJ, Skinner JS, Gardner KG, Francia E, Pecchioni N (2007) Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J 51:308–321

    Article  CAS  PubMed  Google Scholar 

  • The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • Vágújfalvi A, Aprile A, Miller A, Dubcovsky J, Delugu G, Galiba G et al (2005) The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol Genet Genom 274:506–514

    Article  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  CAS  PubMed  Google Scholar 

  • Watson JC, Thompson WF (1988) Purification and restriction endonuclease analysis of plant nuclear DNA. In: Weissbach A, Weissbach H (eds), Methods for plant molecular biology. Academic Press, San Diego Vol. pp. 57–75

    Chapter  Google Scholar 

  • Wiebe GA and Reid DA (1958) Comparative winter hardiness of barley varieties. Tech Bull USDA 1176:20

    Google Scholar 

  • Wiebe GA and Reid DA (1961) Classification of barley varieties grown in the United States and Canada in 1958. Tech Bull USDA 1224:234

    Google Scholar 

  • Xue GP (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J 33:373–383

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Harold E. Bockelman at the National Plant Germplasm System (NPGS; http://www.ars-grin.gov/npgs/index.html) for providing barley Accessions. We thank Drs. David F. Francis for suggestions in assaying the MO B lines and Erich Grotewold for suggestions in carrying out the ChIP assays.

Funding

This work was supported by grants from the Ohio Plant Biotechnology Consortium (2010-011) and the United States Barley Genome Project (USDA-CSREES subaward CO396A-F), and the OARDC tornado research loss recovery fund (OHOG0490). Salaries and research support in the Stockinger lab were provided by state and federal funds appropriated to The Ohio State University, Ohio Agricultural Research and Development Center.

Author contributions

EJS directed the experiments, TD and EJS designed individual experiments, TD carried out the experiments, KM assisted with ChIP experiments, TD and EJS interpreted the data and wrote the manuscript. TD, KM, and EJS edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Stockinger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12359 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhillon, T., Morohashi, K. & Stockinger, E.J. CBF2ACBF4B genomic region copy numbers alongside the circadian clock play key regulatory mechanisms driving expression of FR-H2 CBFs. Plant Mol Biol 94, 333–347 (2017). https://doi.org/10.1007/s11103-017-0610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0610-z

Keywords

Navigation