Skip to main content
Log in

A pathogenesis related-10 protein CaARP functions as aldo/keto reductase to scavenge cytotoxic aldehydes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Pathogenesis related-10 (PR-10) proteins are present as multigene family in most of the higher plants. The role of PR-10 proteins in plant is poorly understood. A sequence analysis revealed that a large number of PR-10 proteins possess conserved motifs found in aldo/keto reductases (AKRs) of yeast and fungi. We took three PR-10 proteins, CaARP from chickpea, ABR17 from pea and the major pollen allergen Bet v1 from silver birch as examples and showed that these purified recombinant proteins possessed AKR activity using various cytotoxic aldehydes including methylglyoxal and malondialdehyde as substrates and the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) as co-factor. Essential amino acids for this catalytic activity were identified by substitution with other amino acids. CaARP was able to discriminate between the reduced and oxidized forms of NADP independently of its catalytic activity and underwent structural change upon binding with NADPH. CaARP protein was preferentially localized in cytosol. When expressed in bacteria, yeast or plant, catalytically active variants of CaARP conferred tolerance to salinity, oxidative stress or cytotoxic aldehydes. CaARP-expressing plants showed lower lipid peroxidation product content in presence or absence of stress suggesting that the protein functions as a scavenger of cytotoxic aldehydes produced by metabolism and lipid peroxidation. Our result proposes a new biochemical property of a PR-10 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal P, Bhatt V, Singh R, Das M, Sopory SK, Chikara J (2013) Pathogenesis-related gene, JcPR-10a from Jatropha curcas exhibit RNase and antifungal activity. Mol Biotechnol 54:412–425

    Article  PubMed  CAS  Google Scholar 

  • Andrade LB, Oliveira AS, Ribeiro JK, Kiyota S, Vasconcelos IM, de Oliveira JT, de Sales MP (2010) Effects of a novel pathogenesis-related class 10 (PR-10) protein from Crotalaria pallida roots with papain inhibitory activity against root-knot nematode Meloidogyne incognita. J Agric Food Chem 58:4145–4152

    Article  PubMed  CAS  Google Scholar 

  • Bantignies B, Seguin J, Muzac I, Dedaldechamp F, Gulick P, Ibrahim R (2000) Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol Biol 42:871–881

    Article  PubMed  CAS  Google Scholar 

  • Boominathan P, Shukla R, Kumar A, Manna D, Negi D, Verma PK, Chattopadhyay D (2004) Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum. Plant Physiol 135:1608–1620

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Breiteneder H, Pettenburger K, Bito A, Valenta R et al (1989) The gene coding for the major birch pollen allergen Betv1, is highly homologous to a pea disease resistance response gene. EMBO J 8:1935–1938

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bus JS, Gibson JE (1984) Paraquat: model for oxidant-initiated toxicity. Environ Health Perspect 55:37–46

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chadha P, Das RH (2006) A pathogenesis related protein, AhPR10 from peanut: an insight of its mode of antifungal activity. Planta 225:213–222

    Article  PubMed  CAS  Google Scholar 

  • Chaoui A, Garcia J, Kurt AM (1997) Gouty tophus simulating soft tissue tumor in a heart transplant recipient. Skeletal Radiol 26:626–628

    Article  PubMed  CAS  Google Scholar 

  • Chen ZY, Brown RL, Rajasekaran K, Damann KE, Cleveland TE (2006) Identification of a maize kernel pathogenesis-related protein and evidence for its involvement in resistance to Aspergillus flavus infection and aflatoxin production. Phytopathology 96:87–95

    Article  PubMed  CAS  Google Scholar 

  • Davey MW, Stals E, Panis B, Keulemans J et al (2005) High-throughput determination of malondialdehyde in plant tissues. Anal Biochem 347:201–207

    Article  PubMed  CAS  Google Scholar 

  • Der JP, Barker MS, Wickett NJ, dePamphilis CW et al (2011) De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum. BMC Genomics 12:99–104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • El-Banna A, Hajirezaei MR, Wissing J, Ali Z et al (2010) Over-expression of PR-10a leads to increased salt and osmotic tolerance in potato cell cultures. J Biotechnol 150:277–287

    Article  PubMed  CAS  Google Scholar 

  • Fernandes AM, Gonzalez J, Wink M, Aleixo A (2013a) Multilocus phylogeography of the wedge-billed woodcreeper Glyphorynchus spirurus (Aves, Furnariidae) in lowland Amazonia: widespread cryptic diversity and paraphyly reveal a complex diversification pattern. Mol Phylogenet Evol 66:270–282

    Article  PubMed  Google Scholar 

  • Fernandes H, Michalska K, Sikorski M, Jaskolski M (2013b) Structural and functional aspects of PR-10 proteins. FEBS J 280:1169–1199

    Article  PubMed  CAS  Google Scholar 

  • Fristensky B, Horovitz D, Hadwiger LA (1988) cDNA sequences for pea disease resistance response genes. Plant Mol Biol 11:713–715

    Article  PubMed  CAS  Google Scholar 

  • Gajhede M, Osmark P, Poulsen FM, Ipsen H et al (1996) X-ray and NMR structure of Bet v 1, the origin of birch pollen allergy. Nat Struct Biol 3:1040–1045

    Article  PubMed  CAS  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40D:1178–1186

    Article  Google Scholar 

  • Grote M (1999) In situ localization of pollen allergens by immunogold electron microscopy: allergens at unexpected sites. Int Arch Allergy Immunol 118:1–6

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann-Sommergruber K, Vanek-Krebitz M, Radauer C, Wen J, Ferreira F, Scheiner O, Breiteneder H (1997) Genomic characterization of members of the Bet v 1 family: genes coding for allergens and pathogenesis-related proteins share intron positions. Gene 197:91–100

    Article  PubMed  CAS  Google Scholar 

  • Jain D, Chattopadhyay D (2010) Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biol 10:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain D, Roy N, Chattopadhyay D (2009) CaZF, a plant transcription factor functions through and parallel to HOG and calcineurin pathways in Saccharomyces cerevisiae to provide osmotolerance. PLoS One 4:e5154

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong EY, Sopher C, Kim IS, Lee H (2001) Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Yeast 18:1081–1089

    Article  PubMed  CAS  Google Scholar 

  • Jeong EY, Kim IS, Lee H (2002) Identification of lysine-78 as an essential residue in the Saccharomyces cerevisiae xylose reductase. FEMS Microbiol Lett 209:223–228

    Article  PubMed  CAS  Google Scholar 

  • Klimacek M, Szekely M, Griessler R, Nidetzky B (2001) Exploring the active site of yeast xylose reductase by site-directed mutagenesis of sequence motifs characteristic of two dehydrogenase/reductase family types. FEBS Lett 500:149–152

    Article  PubMed  CAS  Google Scholar 

  • Koistinen KM, Hassinen VH, Gynther PAM et al (2002a) Birch PR-10c is induced by factors causing oxidative stress but appears not to confer tolerance to these agents. New Phytol 155:381–391

    Article  CAS  Google Scholar 

  • Koistinen KM, Kokko HI, Hassinen VH, Tervahauta AI, Auriola S, Kärenlampi SO (2002b) Stress-related RNase PR-10c is post-translationally modified by glutathione in birch. Plant Cell Environ 25:707–715

    Article  CAS  Google Scholar 

  • Kubiseski TJ, Flynn TG (1995) Studies on human aldose reductase: probing the role of arginine 268 by site-directed mutagenesis. J Biol Chem 270:16911–16917

    Article  PubMed  CAS  Google Scholar 

  • Kubiseski TJ, Hyndman DJ, Morjana NA, Flynn T (1992) Studies on pig muscle aldose reductase: kinetic mechanism and evidence for a slow conformational change upon coenzyme binding. J Biol Chem 267:6510–6517

    PubMed  CAS  Google Scholar 

  • Kumar V, Carison KA, Ohgi KA et al (2002) Transcription corepressor CtBP Is an NAD+-regulated dehydrogenase. Mol Cell 10:857–869

    Article  PubMed  CAS  Google Scholar 

  • Lamb HK, Leslie K, Dodds AL et al (2003) The negative transcriptional regulator NmrA discriminates between oxidized and reduced dinucleotides. J Biol Chem 278:32107–32114

    Article  PubMed  CAS  Google Scholar 

  • Larroy C, Fernandez M, González E, Parés X, Biosca J (2002) Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem J 361:163–172

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee H (1998) The structure and function of yeast xylose (aldose) reductases. Yeast 14:977–984

    Article  PubMed  CAS  Google Scholar 

  • Lee OR, Pulla RK, Kim YJ, Balusamy SR, Yang DC (2012a) Expression and stress tolerance of PR10 genes from Panax ginseng C. A. Meyer. Mol Biol Rep 39:2365–2374

    Article  PubMed  CAS  Google Scholar 

  • Lee OR, Kim YJ, Balusamy SR, Khorolragchaa A et al (2012b) Expression of the ginseng PgPR10-1 in Arabidopsis confers resistance against fungal and bacterial infection. Gene 506:85–92

    Article  PubMed  CAS  Google Scholar 

  • Lesk AM (1995) NAD-binding domains of dehydrogenases. Curr Opin Struct Biol 5:775–783

    Article  PubMed  CAS  Google Scholar 

  • Liscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66:2501–2520

    PubMed  Google Scholar 

  • Liu JJ, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68:3–13

    Article  CAS  Google Scholar 

  • Liu ZL, Moon J (2009) A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 446:1–10

    Article  PubMed  CAS  Google Scholar 

  • Liu JJ, Ekramoddoullah AK, Piggott N, Zamani A (2005) Molecular cloning of a pathogen/wound-inducible PR10 promoter from Pinus monticola and characterization in transgenic Arabidopsis plants. Planta 221:159–169

    Article  PubMed  CAS  Google Scholar 

  • Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S (2008) Multiple gene-mediated NAD (P) H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743–753

    Article  PubMed  CAS  Google Scholar 

  • Mano J (2012) Reactive carbonyl species: their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiol Biochem 59:90–97

    Article  PubMed  CAS  Google Scholar 

  • Markovic-Housley Z, Degano M, Lamba D et al (2003) Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. J Mol Biol 325:123–133

    Article  PubMed  CAS  Google Scholar 

  • Mattila K, Renkonen R (2009) Modelling of Bet v 1 binding to lipids. Scand J Immunol 70:116–124

    Article  PubMed  CAS  Google Scholar 

  • Mogensen JE, Wimmer R, Larsen JN, Spangfort MD, Otzen DE (2002) The major birch allergen, Bet v 1, shows affinity for a broad spectrum of physiological ligands. J Biol Chem 277:23684–23692

    Article  PubMed  CAS  Google Scholar 

  • Oberschall A, Deak M, Torok K et al (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J 24:437–446

    Article  PubMed  CAS  Google Scholar 

  • Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH (2004) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 37:186–198

    Article  PubMed  CAS  Google Scholar 

  • Pasternak O, Bujacz GD, Fujimoto Y et al (2006) Crystal structure of Vigna radiata cytokinin-specific binding protein in complex with zeatin. Plant Cell 18:2622–2634

    Article  PubMed  PubMed Central  Google Scholar 

  • Pryor WA, Stanley JP (1975) A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids: nonenzymatic production of prostaglandin endoperoxides during autoxidation. J Organ Chem 40:3615–3617

    Article  CAS  Google Scholar 

  • Pungartnik C, da Silva AC, de Melo SA et al (2009) High-affinity copper transport and Snq2 export permease of Saccharomyces cerevisiae modulate cytotoxicity of PR-10 from Theobroma cacao. Mol Plant Microbe Interact 22:39–51

    Article  PubMed  CAS  Google Scholar 

  • Samanani N, Liscombe DK, Facchini PJ (2004) Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant J 40:302–313

    Article  PubMed  CAS  Google Scholar 

  • Scholl I, Kalkura N, Shedziankova Y, Bergmann A et al (2005) Dimerization of the major birch pollen allergen Bet v 1 is important for its in vivo IgE-cross-linking potential in mice. J Immunol 175:6645–6650

    Article  PubMed  Google Scholar 

  • Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress: new tools for reactive oxygen species research. Plant Physiol 141:367–372

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Somssich IE, Schmelzer E, Bollmann J, Hahlbrock K (1986) Rapid activation by fungal elicitor of genes encoding “pathogenesis-related” proteins in cultured parsley cells. Proc Natl Acad Sci USA 83:2427–2430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Srivastava S, Rahman MH, Shah S, Kav NN (2006) Constitutive expression of the pea ABA-responsive 17 (ABR17) cDNA confers multiple stress tolerance in Arabidopsis thaliana. Plant Biotechnol J 4:529–549

    PubMed  CAS  Google Scholar 

  • Swoboda I, Hoffmann-Sommergruber K, O’Ríordáin G, Scheiner O, Heberle-Bors E, Vicente O (1996) Bet v 1 proteins, the major birch pollen allergens and members of a family of conserved pathogenesis-related proteins, show ribonuclease activity in vitro. Physiol Plant 96:433–438

    Article  CAS  Google Scholar 

  • Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58:778–790

    Article  PubMed  CAS  Google Scholar 

  • Turoczy Z, Kis P, Torok K, Cserhati M, Lendvai A, Dudits D, Horvath GV (2011) Overproduction of a rice aldo-keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification. Plant Mol Biol 75:399–412

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  PubMed  CAS  Google Scholar 

  • Wang K-H, Sipes B, Schmitt D (2002) Crotalaria as a cover crop for nematode management: a review. Nematropica 32:35–57

    CAS  Google Scholar 

  • Webb SR, Lee H (1992) Characterization of xylose reductase from the yeast Pichia stipitis: evidence for functional thiol and histidyl groups. J Gen Microbiol 138:1857–1863

    Article  CAS  Google Scholar 

  • Wen J, Vanek-Krebitz M, Hoffmann-Sommergruber K, Scheiner O, Breiteneder H (1997) The potential of Betv1 homologues, a nuclear multigene family, as phylogenetic markers in flowering plants. Mol Phylogenet Evol 8:317–333

    Article  PubMed  CAS  Google Scholar 

  • Wonisch W, Hayna M, Schaura RJ, Tatzbera F et al (1997) Increased stress parameter synthesis in the yeast Saccharomyces cerevisiae after treatment with 4-hydroxy-2-nonenal. FEBS Lett 405:11–15

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Blancaflor EB, Roossinck MJ (2003) In spite of induced multiple defense responses, tomato plants infected with cucumber mosaic virus and D satellite RNA succumb to systemic necrosis. Mol Plant Microbe Interact 16:467–476

    Article  PubMed  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SN, Ray M, Reddy MK, Sopory SK et al (2005a) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. BBRC 337:61–67

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005b) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579:6265–6271

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Piston DW, Goodman RH (2002) Regulation of corepressor function by nuclear NADH. Science 295:1895–1897

    PubMed  CAS  Google Scholar 

  • Zheng X, Dai X, Zhao Y et al (2007) Restructuring of the dinucleotide-binding fold in an NADP(H) sensor protein. Proc Natl Acad Sci USA 104:8809–8814

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zubini P, Zambelli B, Musiani F, Ciurli S, Bertolini P, Baraldi E (2009) The RNA hydrolysis and the cytokinin binding activities of PR-10 proteins are differently performed by two isoforms of the Pru p 1 peach major allergen and are possibly functionally related. Plant Physiol 150:1235–1247

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Dr. Alok K. Sinha and Dr. Arsheed H. Seikh, NIPGR for Bet v1 clone. No conflict of interest declared. DJ acknowledges INSPIRE faculty program of Department of Science and Technology (DST), Government of India. HK acknowledges Council of Scientific and Industrial Research, India for fellowship. This work was supported by the core grant from National Institute of Plant Genome Research (NIPGR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Chattopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Accession codes: CaARP (GenBank accession: NP_001296647.1), Bet V1 (GenBank accession: P15494) and PsABR17 (GenBank accession: Z15128).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, D., Khandal, H., Khurana, J.P. et al. A pathogenesis related-10 protein CaARP functions as aldo/keto reductase to scavenge cytotoxic aldehydes. Plant Mol Biol 90, 171–187 (2016). https://doi.org/10.1007/s11103-015-0405-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0405-z

Keywords

Navigation