Skip to main content
Log in

A combinatorial bidirectional and bicistronic approach for coordinated multi-gene expression in corn

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Transgene stacking in trait development process through genetic engineering is becoming complex with increased number of desired traits and multiple modes of action for each trait. We demonstrate here a novel gene stacking strategy by combining bidirectional promoter (BDP) and bicistronic approaches to drive coordinated expression of multi-genes in corn. A unidirectional promoter, Ubiquitin-1 (ZMUbi1), from Zea mays was first converted into a synthetic BDP, such that a single promoter can direct the expression of two genes from each end of the promoter. The BDP system was then combined with a bicistronic organization of genes at both ends of the promoter by using a Thosea asigna virus 2A auto-cleaving domain. With this gene stacking configuration, we have successfully obtained expression in transgenic corn of four transgenes; three transgenes conferring insect (cry34Ab1 and cry35Ab1) and herbicide (aad1) resistance, and a phiyfp reporter gene using a single ZMUbi1 bidirectional promoter. Gene expression analyses of transgenic corn plants confirmed better coordinated expression of the four genes compared to constructs driving each gene by independent unidirectional ZmUbi1 promoter. To our knowledge, this is the first report that demonstrates application of a single promoter for co-regulation of multiple genes in a crop plant. This stacking technology would be useful for engineering metabolic pathways both for basic and applied research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. ™ SmartStax is a registered trademark of Monsanto Technology LLC. SmartStax technology has been developed by Dow AgroSciences and Monsanto.

  2. ™ Herculex is a registered trademark of Dow AgroSciences LLC.

References

  • Ainley M et al (2004) Genetic engineering in plants; DNA sequences and constructs useful in controlling expression of recombinant genes in plants, constructs use novel regulatory sequences derived from maize root preferential cationic peroxidase gene. US Patent 6699984 B1

  • An G, Mitra A, Choi HK, Costa MA, An K, Thornburg RW, Ryan CA (1989) Functional analysis of the 3′ control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1:115–122

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bhullar S, Chakravarthy S, Advani S, Datta S, Pental D, Burma PK (2003) Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping. Plant Physiol 132:988–998. doi:10.1104/pp.103.020602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Butler JEF, Kadonaga JT (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Gene Dev 16:2583–2592. doi:10.1101/gad.1026202

  • Chaturvedi CP, Sawant SV, Kiran K, Mehrotra R, Lodhi N, Ansari SA, Tuli R (2006) Analysis of polarity in the expression from a multifactorial bidirectional promoter designed for high-level expression of transgenes in plants. J Biotechnol 123:1–12. doi:10.1016/j.biotec.2005.10.014

    Article  CAS  PubMed  Google Scholar 

  • Cowen NM, Armstrong K, Smith KA (2007) Use of regulatory sequences in transgenic plants. US Patent 7179902 B2

  • Daniell H, Dhingra A (2002) Multigene engineering: dawn of an exciting new era in biotechnology. Curr Opin Biotechnol 13:136–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Felipe P, Luke GA, Brown JD, Ryan MD (2010) Inhibition of 2A-mediated ‘cleavage’ of certain artificial polyproteins bearing N-terminal signal sequences. Biotechnol J 5:213–223. doi:10.1002/biot.200900134

    Article  PubMed Central  PubMed  Google Scholar 

  • Donnelly ML, Luke G, Mehrotra A, Li X, Hughes LE, Gani D, Ryan MD (2001) Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J Gen Virol 82:1013–1025

    CAS  PubMed  Google Scholar 

  • El Amrani A, Barakate A, Askari BM, Li XJ, Roberts AG, Ryan MD, Halpin C (2004) Coordinate expression and independent subcellular targeting of multiple proteins from a single transgene. Plant Physiol 135:16–24. doi:10.1104/pp.103.032649

    Article  PubMed Central  PubMed  Google Scholar 

  • Ha SH, Liang YS, Jung H, Ahn MJ, Suh, SC, Kweon SJ, Kim JK (2010) Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol J 8:928–938 doi:10.1111/j.1467-7652.2010.00543.x

  • Halpin C (2005) Gene stacking in transgenic plants–the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155. doi:10.1111/j.1467-7652.2004.00113.x

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants Embo J 6:3901–3907

    CAS  Google Scholar 

  • Kumar S, Fladung M (2001) Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213:731–740

    Article  CAS  PubMed  Google Scholar 

  • Langridge WH, Fitzgerald KJ, Koncz C, Schell J, Szalay AA (1989) Dual promoter of Agrobacterium tumefaciens mannopine synthase genes is regulated by plant growth hormones. Proc Natl Acad Sci USA 86:3219–3223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Olson M, Lin G, Hey T, Tan SY, Narva KE (2013) Bacillus thuringiensis Cry34Ab1/Cry35Ab1 interactions with western corn rootworm midgut membrane binding sites. PLoS One 8:e53079. doi:10.1371/journal.pone.0053079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo Z, Chen Z (2007) Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis. The Plant Cell Online 19:943–958. doi:10.1105/tpc.106.045724

    Article  CAS  Google Scholar 

  • Miller PD (2013) Method for improved transformation using agrobacterium. US Patent 0157369 A1

  • Minskaia E, Ryan MD (2013) Protein coexpression using FMDV 2A: effect of “linker” residues. Biomed Res Int. doi:10.1155/2013/291730

    PubMed Central  PubMed  Google Scholar 

  • Minskaia E, Nicholson J, Ryan MD (2013) Optimisation of the foot-and-mouth disease virus 2A co-expression system for biomedical applications. BMC Biotechnol 13:67. doi:10.1186/1472-6750-13-67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mourrain P, van Blokland R, Kooter JM, Vaucheret H (2007) A single transgene locus triggers both transcriptional and post-transcriptional silencing through double-stranded RNA production Planta 225:365–379. doi:10.1007/s00425-006-0366-1

    CAS  Google Scholar 

  • Mueller D, Pope R (2009) Corn field guide. Iowa State University, Ames

    Google Scholar 

  • Oleson JD, Park YL, Nowatzki TM, Tollefson JJ (2005) Node-injury scale to evaluate root injury by corn rootworms (Coleoptera: Chrysomelidae). J Econ Entomol 98:1–8

    Article  PubMed  Google Scholar 

  • Osborn MJ et al (2005) A picornaviral 2A-like sequence-based tricistronic vector allowing for high-level therapeutic gene expression coupled to a dual-reporter system. Mol Ther 12:569–574. doi:10.1016/j.ymthe.2005.04.013

    Article  CAS  PubMed  Google Scholar 

  • Parry MA, Hawkesford MJ (2012) An integrated approach to crop genetic improvement. J Integr Plant Biol 54:250–259. doi:10.1111/j.1744-7909.2012.01109.x

    Article  PubMed  Google Scholar 

  • Peremarti A et al (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73:363–378. doi:10.1007/s11103-010-9628-1

    Article  CAS  PubMed  Google Scholar 

  • Pringle FM, Gordon KH, Hanzlik TN, Kalmakoff J, Scotti PD, Ward VK (1999) A novel capsid expression strategy for Thosea asigna virus (Tetraviridae). J Gen Virol 80(Pt 7):1855–1863

    CAS  PubMed  Google Scholar 

  • Que Q et al (2010) Trait stacking in transgenic crops: challenges and opportunities GM. Crops 1:220–229. doi:10.4161/gmcr.1.4.13439

    Article  Google Scholar 

  • Sawant SV (2005) A variety of synergistic and antagonistic interactions mediated by cis-acting DNA motifs regulate gene expression in plant cells and modulate stability of the transcription complex formed on a basal promoter. J Exp Bot 56:2345–2353. doi:10.1093/jxb/eri227

    Article  CAS  PubMed  Google Scholar 

  • Shagin DA et al (2004) GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol Biol Evol 21:841–850. doi:10.1093/molbev/msh079

    Article  CAS  PubMed  Google Scholar 

  • Siebert MW et al (2012) Evaluation of corn hybrids expressing Cry1F, Cry1A.105, Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 against southern United States insect pests. J Econ Entomol 105:1825–1834. doi:10.1603/Ec12155

    Article  CAS  PubMed  Google Scholar 

  • Velten J, Velten L, Hain R, Schell J (1984) Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens. EMBO J 3:2723–2730

    PubMed Central  CAS  PubMed  Google Scholar 

  • Venter M (2007) Synthetic promoters: genetic control through cis engineering. Trends Plant Sci 12:118–124. doi:10.1016/j.tplants.2007.01.002

    Article  CAS  PubMed  Google Scholar 

  • Wehrmann A, Van Vliet A, Opsomer C, Botterman J, Schulz A (1996) The similarities of bar and pat gene products make them equally applicable for plant engineers. Nat Biotechnol 14:1274–1278. doi:10.1038/nbt1096-1274

    Article  CAS  PubMed  Google Scholar 

  • Wright TR et al (2010) Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc Natl Acad Sci USA 107:20240–20245. doi:10.1073/pnas.1013154107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie MT, He YH, Gan SS (2001) Bidirectionalization of polar promoters in plants. Nat Biotechnol 19:677–679. doi:10.1038/90296

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Lei Y, Lin S, Zhang Q, Zhang Z (2011) Bidirectionalization of a methyl jasmonate-inducible plant promoter. Biotechnol Lett 33:387–393. doi:10.1007/s10529-010-0431-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Heather Robinson, Jamie Torrence, Stephen Foulk, Stephen Novak, Daren Hemingway and the greenhouse staff for their help in plant transformation, planting and seed production, and Nicole Skaggs for molecular analysis. The authors thank Susan Jayne, Michelle Smith, and Katherine Armstrong for their support, and Steve Evans, Katherine Armstrong, Tarlochan Dhadialla and Tom Meade for reading the manuscript. We also thank anonymous reviewers for their critical review of the manuscript and constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar.

Additional information

Sandeep Kumar and Diaa AlAbed have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1714 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., AlAbed, D., Whitteck, J.T. et al. A combinatorial bidirectional and bicistronic approach for coordinated multi-gene expression in corn. Plant Mol Biol 87, 341–353 (2015). https://doi.org/10.1007/s11103-015-0281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0281-6

Keywords

Navigation