Skip to main content
Log in

Functional analysis of OsPGIP1 in rice sheath blight resistance

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

As one of the most devastating diseases of rice, sheath blight causes severe rice yield loss. However, little progress has been made in rice breeding for sheath blight resistance. It has been reported that polygalacturonase inhibiting proteins can inhibit the degradation of the plant cell wall by polygalacturonases from pathogens. Here, we prokaryotically expressed and purified OsPGIP1 protein, which was verified by Western blot analysis. Activity assay confirmed the inhibitory activity of OsPGIP1 against the PGase from Rhizoctonia solani. In addition, the location of OsPGIP1 was determined by subcellular localization. Subsequently, we overexpressed OsPGIP1 in Zhonghua 11 (Oryza sativa L. ssp. japonica), and applied PCR and Southern blot analysis to identify the positive T0 transgenic plants with single-copy insertions. Germination assay of the seeds from T1 transgenic plants was carried out to select homozygous OsPGIP1 transgenic lines, and the expression levels of OsPGIP1 in these lines were analyzed by quantitative real-time PCR. Field testing of R. solani inoculation showed that the sheath blight resistance of the transgenic rice was significantly improved. Furthermore, the levels of sheath blight resistance were in accordance with the expression levels of OsPGIP1 in the transgenic lines. Our results reveal the functions of OsPGIP1 and its resistance mechanism to rice sheath blight, which will facilitate rice breeding for sheath blight resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguero CB, Uratsu SL, Greve C, Powell ALT, Labavitch JM, Meredith CP, Dandekar AM (2005) Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol Plant Pathol 6:43–51

    Article  CAS  PubMed  Google Scholar 

  • Albersheim P, Anderson AJ (1971) Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci USA 68:1815–1819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alghisi P, Favaron F (1995) Pectin-degrading enzymes and plant-parasite interactions. Eur J Plant Pathol 101:365–375

    Article  CAS  Google Scholar 

  • Chen H, Tang W, Xu C, Li X, Lin Y, Zhang Q (2005) Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor Appl Genet 111:1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang Y, Zuo S, Tong Y, Pan X, Xu J (2010) Isolation, purification and characterization of polygalacturonase (PG) from Rhizoctonia solani, the pathogen of rice sheath blight. Acta Phytopathol Sin 40:276–281

    Google Scholar 

  • De Lorenzo G, D’Ovidio R, Cervone F (2001) The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu Rev Phytopathol 39:313–335

    Article  PubMed  Google Scholar 

  • Ferrari S, Vairo D, Ausubel FM, Cervone F, De Lorenzo G (2003) Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell 15:93–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrari S, Sella L, Janni M, De Lorenzo G, Favaron F, D’Ovidio R (2012) Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum. Plant Biol 14:31–38

    Article  CAS  PubMed  Google Scholar 

  • Fielding AH (1981) Natural inhibitors of fungal polygalacturonases in infected fruit tissues. J Gen Microbiol 123:377–381

    CAS  Google Scholar 

  • Gotoh Y, Nalumpang S, Isshiki A, Utsumi T, Kenji G, Yamamoto H, Akimitsu K (2002) A cDNA encoding polygalacturonase-inhibiting protein induced in citrus leaves by polygalacturonase of Alternaria citri. J Gen Plant Pathol 68:57–61

    Article  CAS  Google Scholar 

  • Helliwell EE, Wang Q, Yang Y (2013) Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol J 11:33–42

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Dai R, Wang Y, Zhang Y, Liu Z, Fang R, Zhao W, Li L, Lin Q, Li L (2012) Molecular cloning, sequence analysis, and expression of the polygalacturonase-inhibiting protein (PGIP) gene in mulberry. Plant Mol Biol Rep 30:176–186

    Article  CAS  Google Scholar 

  • Hwang BH, Bae H, Lim HS, Kim KB, Kim SJ, Im MH, Park BS, Kim J (2010) Overexpression of polygalacturonase-inhibiting protein 2 (PGIP2) of Chinese cabbage (Brassica rapa ssp. pekinensis) increased resistance to the bacterial pathogen Pectobacterium carotovorum ssp. carotovorum. Plant Cell Tiss Org 103:293–305

    Article  CAS  Google Scholar 

  • Jang S, Lee B, Kim C, Kim SJ, Yim J, Han JJ, Lee S, Kim SR, An G (2003) The OsFOR1 gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice. Plant Mol Biol 53:357–372

    Article  CAS  PubMed  Google Scholar 

  • Janni M, Di Giovanni M, Roberti S, Capodicasa C, D’Ovidio R (2006) Characterization of expressed Pgip genes in rice and wheat reveals similar extent of sequence variation to dicot PGIPs and identifies an active PGIP lacking an entire LRR repeat. Theor Appl Genet 113:1233–1245

    Article  CAS  PubMed  Google Scholar 

  • Janni M, Sella L, Favaron F, Blechl AE, De Lorenzo G, D’Ovidio R (2008) The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant Microbe In 21:171–177

    Article  CAS  Google Scholar 

  • Janni M, Bozzini T, Moscetti I, Volpi C, D’Ovidio R (2013) Functional characterisation of wheat Pgip genes reveals their involvement in the local response to wounding. Plant Biology 15:1019–1024

    Article  CAS  PubMed  Google Scholar 

  • Joubert DA, Slaughter AR, Kemp G, Becker JVW, Krooshof GH, Bergmann C, Benen J, Pretorius IS, Vivier MA (2006) The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases. Transgenic Res 15:687–702

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Pinson SRM, Marchetti MA, Stansel JW, Park WD (1995) Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet 91:382–388

    CAS  PubMed  Google Scholar 

  • Lin Y, Zhang Q (2005) Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23:540–547

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Jia Y, Correa-Victoria FJ, Prado GA, Yeater KM, McClung A, Correll JC (2009) Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology 99:1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Zhou F, Zhou Y, Fan X, Ye S, Wang L, Chen H, Lin Y (2012) Expression profile analysis of the polygalacturonase-inhibiting protein genes in rice and their responses to phytohormones and fungal infection. Plant Cell Rep 31:1173–1187

    Article  CAS  PubMed  Google Scholar 

  • Manfredini C, Sicilia F, Ferrari S, Pontiggia D, Salvi G, Caprari C, Lorito M, Lorenzo GD (2005) Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits BcPG1, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenic plants from infection. Physiol Mol Plant P 67:108–115

    Article  CAS  Google Scholar 

  • Mao B, Liu X, Hu D, Li D (2014) Co-expression of RCH10 and AGLU1 confers rice resistance to fungal sheath blight Rhizoctonia solani and blast Magnorpathe oryzae and reveals impact on seed germination. World J Microbiol Biotechnol 30:1229–1238

    Article  CAS  PubMed  Google Scholar 

  • Mishra AK, Sharma K, Misra RS (2012) Elicitor recognition, signal transduction and induced resistance in plants. J Plant Interact 7:95–120

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nalumpang S, Gotoh Y, Tsuboi H, Kenji G, Yamamoto H, Akimitsu K (2002) Functional characterization of citrus polygalacturonase-inhibiting protein. J Gen Plant Pathol 68:118–127

    Article  CAS  Google Scholar 

  • Oelofse D, Dubery IA, Meyer R, Arendse MS, Gazendam I, Berger DK (2006) Apple polygalacturonase inhibiting protein1 expressed in transgenic tobacco inhibits polygalacturonases from fungal pathogens of apple and the anthracnose pathogen of lupins. Phytochemistry 67:255–263

    Article  CAS  PubMed  Google Scholar 

  • Pinson SRM, Capdevielle FM, Oard JH (2005) Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci 45:503–510

    Article  CAS  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  CAS  PubMed  Google Scholar 

  • Powell ALT, Van Kan J, Ten Have A, Visser J, Greve LC, Bennett AB, Labavitch JM (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant Microbe In 13:942–950

    Article  CAS  Google Scholar 

  • Richter A, Jacobsen HJ, De Kathen A, De Lorenzo G, Briviba K, Hain R, Ramsay G, Kiesecker H (2006) Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera). Plant Cell Rep 25:1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Savary S, Castilla NP, Elazegui FA, McLaren CG, Ynalvez MA, Teng PS (1995) Direct and indirect effects of nitrogen supply and disease source structure on rice sheath blight spread. Phytopathology 85:959–965

    Article  Google Scholar 

  • Savary S, Willocquet L, Elazegui FA, Castilla NP, Teng PS (2000) Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Dis 84:357–369

    Article  Google Scholar 

  • Shah JM, Raghupathy V, Veluthambi K (2009) Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol Lett 31:239–244

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam V (2005) Role of extracytoplasmic leucine rich repeat proteins in plant defence mechanisms. Microbiol Res 160:83–94

    Article  CAS  PubMed  Google Scholar 

  • Simpson CG, MacRae E, Gardner RC (1995) Cloning of a polygalacturonase inhibiting protein from Kiwifruit (Actinidia deliciosa). Plant Physiol 108:1748

    Google Scholar 

  • Slaton NA, Cartwright RD, Meng J, Gbur EE, Norman RJ (2003) Sheath blight severity and rice yield as affected by nitrogen fertilizer rate, application method, and fungicide. Agron J 95:1489–1496

    Article  CAS  Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J, Schönherr J, Jacobsen HJ, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    Article  CAS  PubMed  Google Scholar 

  • Taguchi-Shiobara F, Ozaki H, Sato H, Maeda H, Kojima Y, Ebitani T, Yano M (2013) Mapping and validation of QTLs for rice sheath blight resistance. Breed Sci 63:301–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamburino R, Chambery A, Parente A, Di Maro A (2012) A novel polygalacturonase-inhibiting protein (PGIP) from Lathyrus sativus L. seeds. Protein Pept Lett 19:820–825

    Article  CAS  PubMed  Google Scholar 

  • Tamura M, Gao M, Tao R, Labavitch JM, Dandekar AM (2004) Transformation of persimmon with a pear fruit polygalacturonase inhibiting protein (PGIP) gene. Sci Hortic 103:19–30

    Article  CAS  Google Scholar 

  • Toubart P, Desiderio A, Salvi G, Cervone F, Daroda L, Lorenzo G, Bergmann C, Darvill AG, Albersheim P (1992) Cloning and characterization of the gene encoding the endo polygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgaris L. Plant J 2:367–373

    CAS  PubMed  Google Scholar 

  • Vorwerk S, Somerville S, Somerville C (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9:203–209

    Article  CAS  PubMed  Google Scholar 

  • York WS, Darvill AG, McNeil M, Stevenson TT, Albersheim P (1985) Isolation and characterization of plant cell walls and cell wall components. Methods Enzymol 118:3–40

    Article  Google Scholar 

  • Zuo S, Zhang Y, Yin Y, Chen Z, Pan X (2006) Establishment and improvement of inoculation technique and rating system in researching rice sheath blight resistance in field. J Yangzhou Univ 27:57–61

    Google Scholar 

  • Zuo S, Yin Y, Zhang L, Zhang Y, Chen Z, Pan X (2007) Breeding value and further mapping of a QTL qSB-11 conferring the rice sheath blight resistance. Chin J Rice Sci 21:136–142

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Yangzhou University for their support of field testing of sheath blight resistance. This research was supported by the National Program of Transgenic Variety Development of China, the National Special Key Project for Transgenic Breeding (2014ZX0800103B), the National High Technology Research and Development Program of China (863 Program) and the National Natural Science Foundation of China. We also thank Prof. Zuoxiong Liu for language improvement.

Conflict of interest

We declare that no conflict of interest exists for any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2014_269_MOESM1_ESM.jpg

Expression pattern of OsPGIP1 in different tissues of rice. RT-PCR was performed on total RNAs using gene-specific primers and the amplification products were separated on 1.5% agarose gel (JPEG 138 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Lu, L., Pan, X. et al. Functional analysis of OsPGIP1 in rice sheath blight resistance. Plant Mol Biol 87, 181–191 (2015). https://doi.org/10.1007/s11103-014-0269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0269-7

Keywords

Navigation