Skip to main content
Log in

Exploring the genome of the salt-marsh Spartina maritima (Poaceae, Chloridoideae) through BAC end sequence analysis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Spartina species play an important ecological role on salt marshes. Spartina maritima is an Old-World species distributed along the European and North-African Atlantic coasts. This hexaploid species (2n = 6x = 60, 2C = 3,700 Mb) hybridized with different Spartina species introduced from the American coasts, which resulted in the formation of new invasive hybrids and allopolyploids. Thus, S. maritima raises evolutionary and ecological interests. However, genomic information is dramatically lacking in this genus. In an effort to develop genomic resources, we analysed 40,641 high-quality bacterial artificial chromosome-end sequences (BESs), representing 26.7 Mb of the S. maritima genome. BESs were searched for sequence homology against known databases. A fraction of 16.91 % of the BESs represents known repeats including a majority of long terminal repeat (LTR) retrotransposons (13.67 %). Non-LTR retrotransposons represent 0.75 %, DNA transposons 0.99 %, whereas small RNA, simple repeats and low-complexity sequences account for 1.38 % of the analysed BESs. In addition, 4,285 simple sequence repeats were detected. Using the coding sequence database of Sorghum bicolor, 6,809 BESs found homology accounting for 17.1 % of all BESs. Comparative genomics with related genera reveals that the microsynteny is better conserved with S. bicolor compared to other sequenced Poaceae, where 37.6 % of the paired matching BESs are correctly orientated on the chromosomes. We did not observe large macrosyntenic rearrangements using the mapping strategy employed. However, some regions appeared to have experienced rearrangements when comparing Spartina to Sorghum and to Oryza. This work represents the first overview of S. maritima genome regarding the respective coding and repetitive components. The syntenic relationships with other grass genomes examined here help clarifying evolution in Poaceae, S. maritima being a part of the poorly-known Chloridoideae sub-family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ainouche ML, Baumel A, Salmon A (2004a) Spartina anglica C. E. Hubbard: a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biol J Lin Soc Lond 82:475–484

    Article  Google Scholar 

  • Ainouche ML, Baumel A, Salmon A, Yannic G (2004b) Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytol 161:165–172

    Article  CAS  Google Scholar 

  • Ainouche ML, Fortuné PM, Salmon A, Parisod C, Grandbastien M-A, Fukunaga K et al (2009) Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol Invasions 11:1159–1173

    Article  Google Scholar 

  • Ainouche M, Chelaifa H, Ferreira J, Bellot S, Ainouche A, Salmon A (2012) Polyploid evolution in Spartina: dealing with highly redundant hybrid genomes. In: Soltis DE, Soltis PS (eds) Polyploidy and genome evolution. Springer, Berlin, pp 225–243

    Chapter  Google Scholar 

  • Akhunov ED, Goodyear AW, Geng S, Qi L–L, Echalier B, Gill BS et al (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763

    Article  CAS  PubMed  Google Scholar 

  • Alberts J, Price M, Kania M (1990) Metal concentrations in tissues of Spartina alterniflora (Loisel) and sediments of georgia salt marshes. Estuar Coast Shelf Sci 30:47–58

    Article  CAS  Google Scholar 

  • Ayres DR, Smith DL, Zaremba K, Klohr S, Strong DR (2004) Spread of exotic cordgrasses and hybrids (Spartina sp.) in the tidal marshes of San Francisco Bay, California, USA. Biol Invasions 6:221–231

    Article  Google Scholar 

  • Baisakh N, Subudhi PK, Varadwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct Integr Genomics 8:287–300

    Article  CAS  PubMed  Google Scholar 

  • Baumel A, Ainouche ML, Levasseur JE (2001) Molecular investigations in populations of Spartina anglica C.E. Hubbard (Poaceae) invading coastal Brittany (France). Mol Ecol 10:1689–1701

    Article  CAS  PubMed  Google Scholar 

  • Baumel A, Ainouche ML, Bayer RJ, Ainouche AK, Misset MT (2002a) Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). Mol Phylogenet Evol 22:303–314

    Article  CAS  PubMed  Google Scholar 

  • Baumel A, Ainouche M, Kalendar R, Schulman AH (2002b) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica CE Hubbard (Poaceae). Mol Biol Evol 19:1218–1227

    Article  CAS  PubMed  Google Scholar 

  • Baumel A, Ainouche ML, Misset MT, Gourret JP, Bayer RJ (2003) Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in South-West France: Spartina × neyrautii re-examined. Plant Syst Evol 237:87–97

    Article  CAS  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  CAS  PubMed  Google Scholar 

  • Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B (2011) Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics 12:104

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Dubey A, Saxena R, Penmetsa RV, Poornima KN, Kumar N et al (2011) Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.). BMC Plant Biol 11:56

    Article  CAS  PubMed  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  PubMed  Google Scholar 

  • Caetano M, Vale C, Cesário R, Fonseca N (2008) Evidence for preferential depths of metal retention in roots of salt marsh plants. Sci Total Environ 390:466–474

    Article  CAS  PubMed  Google Scholar 

  • Cambrollé J, Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Pollut Bull 56:2037–2042

    Article  PubMed  Google Scholar 

  • Castellanos E, Figueroa M, Davy A (1994) Nucleation and facilitation in salt-marsh succession—interactions between Spartina maritima and Arthrocnemum perenne. J Ecol 82:239–248

    Article  Google Scholar 

  • Castillo JM, Fernández-Baco L, Castellanos EM, Luque CJ, Figueroa ME, Davy AJ (2000) Lower limits of Spartina densiflora and S. maritima in a Mediterranean salt marsh determined by different ecophysiological tolerances. J Ecol 88:801–812

    Article  Google Scholar 

  • Castillo JM, Ayres DR, Leira-Doce P, Bailey J, Blum M, Strong DR et al (2010) The production of hybrids with high ecological amplitude between exotic Spartina densiflora and native S. maritima in the Iberian Peninsula. Divers Distrib 16:547–558

    Article  Google Scholar 

  • Cavagnaro PF, Chung S-M, Szklarczyk M, Grzebelus D, Senalik D, Atkins AE et al (2008) Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences. Mol Genet Genomics 281:273–288

    Article  PubMed  Google Scholar 

  • Chalhoub B, Belcram H, Caboche M (2004) Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size. Plant Biotechnol J 2:181–188

    Article  CAS  PubMed  Google Scholar 

  • Chaw S-M, Chang C–C, Chen H-L, Li W-H (2004) Dating the monocot? Dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol 58:424–441

    Article  CAS  PubMed  Google Scholar 

  • Cheung F, Town C (2007) A BAC end view of the Musa acuminata genome. BMC Plant Biol 7:29

    Article  PubMed  Google Scholar 

  • Christin PA, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainen V et al (2008) Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr Biol 18:37–43

    Article  CAS  PubMed  Google Scholar 

  • Christin PA, Petitpierre B, Salamin N, Büchi L, Besnard G (2009) Evolution of C4 phosphoenolpyruvate carboxykinase in grasses, from genotype to phenotype. Mol Biol Evol 26:357–365

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217

    Article  PubMed  Google Scholar 

  • Dida MM, Srinivasachary Ramakrishnan S, Bennetzen JL, Gale MD, Devos KM (2006) The genetic map of finger millet, Eleusine coracana. Theor Appl Genet 114:321–332

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  • Ferreira de Carvalho J, Poulain J, Da Silva C, Wincker P, Michon-Coudouel S, Dheilly A et al (2013) Transcriptome de novo assembly from next-generation sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae). Heredity 110:181–193

    Article  CAS  PubMed  Google Scholar 

  • Ferris C, King RA, Gray AJ (1997) Molecular evidence for the maternal parentage in the hybrid origin of Spartina anglica C.E. Hubbard. Mol Ecol 6:185–187

    Article  CAS  Google Scholar 

  • Fortuné PM, Schierenbeck KA, Ainouche AK, Jacquemin J, Wendel JF, Ainouche ML (2007) Evolutionary dynamics of Waxy and the origin of hexaploid Spartina species (Poaceae). Mol Phylogenet Evol 43:1040–1055

    Article  PubMed  Google Scholar 

  • Fortuné PM, Schierenbeck K, Ayres D, Bortolus A, Catrice O, Brown S et al (2008) The enigmatic invasive Spartina densiflora: a history of hybridizations in a polyploidy context. Mol Ecol 17:4304–4316

    Article  PubMed  Google Scholar 

  • Gedye K, Gonzalez-Hernandez J, Ban Y, Ge X, Thimmapuram J, Sun F, Wright C, Ali S, Boe A, Owens V (2010) Investigation of the transcriptome of prairie cord grass, a new cellulosic biomass crop. Int J Plant Genomics 3:69

    CAS  Google Scholar 

  • Gonthier L, Bellec A, Blassiau C, Prat E, Helmstetter N et al (2010) Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae). BMC Res Notes 3:225

    Article  PubMed  Google Scholar 

  • Gonzalez-Hernandez JL, Sarath G, Stein JM, Owens V, Gedye K, Boe A (2009) A multiple species approach to biomass production from native herbaceous perennial feedstocks. In Vitro Cell Dev Biol Plant 45:267–281

    Article  CAS  Google Scholar 

  • Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ et al (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    Article  PubMed  Google Scholar 

  • Grass Phylogeny Working Group II (2012) New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol 193:304–312

    Article  Google Scholar 

  • Groves H, Groves J (1880) Spartina × townsendii Nobis. Report of the Botanical Society and exchange club of the British Isles 1:37

  • Han Y, Korban SS (2008) An overview of the apple genome through BAC end sequence analysis. Plant Mol Biol 67:581–588

    Article  CAS  PubMed  Google Scholar 

  • Hansel CM, Fendorf S, Sutton S, Newville M (2001) Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ Sci Technol 35:3863–3868

    Article  CAS  PubMed  Google Scholar 

  • Hilu KW, Alice LA (2001) A phylogeny of Chloridoideae (Poaceae) based on matK sequences. Syst Bot 26:386–405

    Google Scholar 

  • Hsu C–C, Chung Y-L, Chen T-C, Lee Y-L, Kuo Y-T, Tsai W-C et al (2011) An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. BMC Plant Biol 11:3

    Article  CAS  PubMed  Google Scholar 

  • Huo N, Lazo GR, Vogel JP, You FM, Ma Y, Hayden DM et al (2007) The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Funct Integr Genomics 8:135–147

    Article  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  CAS  PubMed  Google Scholar 

  • Kejnovsky E, Hawkins JS, Feschotte C (2012) Plant transposable elements: biology and evolution. In: Wendel J, Greilhuber J, Dolezel J, Leitch I (eds) Plant genome diversity volume 1: plant genomes, their residents and their evolutionary dynamics. Vienna, pp 17–34

  • Kim C, Jang CS, Kamps TL, Robertson JS, Feltus FA, Paterson AH (2008) Transcriptome analysis of leaf tissue from Bermudagrass (Cynodon dactylon) using a normalised cDNA library. Funct Plant Biol 35:585–594

    Article  CAS  Google Scholar 

  • Kim C, Tang H, Paterson AH (2009) Duplication and divergence of grass genomes: integrating the Chloridoids. Trop Plant Biol 2:51–62

    Article  Google Scholar 

  • Kim C, Lee T-H, Compton RO, Robertson JS, Pierce GJ, Paterson AH (2013) A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin. Plant Mol Biol 81:139–147

    Article  CAS  PubMed  Google Scholar 

  • Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  Google Scholar 

  • Larher F, Hamelin J, Stewart GR (1977) L’acide dimethylsulfonium propanoïque de Spartina anglica. Phytochemistry 16:2019–2020

    Article  CAS  Google Scholar 

  • Lee RW (2003) Physiological adaptations of the invasive cordgrass Spartina anglica to reducing sediments: rhizome metabolic gas fluxes and enhanced O2 and H2S transport. Mar Biol 143:9–15

    Article  CAS  Google Scholar 

  • Li Y-C, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  CAS  PubMed  Google Scholar 

  • Luque CJ, Castellanos EM, Castillo JM, Gonzalez M, Gonzalez-Vilches MC, Figueroa ME (1999) Metals in halophytes of a contaminated estuary (Odiel Saltmarshes, SW Spain). Mar Pollut Bull 38:49–51

    CAS  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-Retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  CAS  PubMed  Google Scholar 

  • Manninen I, Schulman AH (1993) BARE-1, a Copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol 22:829–846

    Article  CAS  PubMed  Google Scholar 

  • Marchant CJ (1967) Evolution in Spartina (Gramineae). I. The history and morphology of the genus in Britain. Bot J Linn Soc 60:1–24

    Article  Google Scholar 

  • Marchant C, Goodman P (1969) Spartina maritima (Curtis) Fernald. J Ecol 57:287–302

    Article  Google Scholar 

  • Mobberley DG (1956) Taxonomy and distribution of the genus Spartina. Iowa State Coll J Sci 30:471–574

    Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  CAS  PubMed  Google Scholar 

  • Osoegawa K, Vessere GM, Shu CL, Hoskins RA, Abad JP, de Pablos B et al (2007) BAC clones generated from sheared DNA. Genomics 89:291–299

    Article  CAS  PubMed  Google Scholar 

  • Otte ML, Wilson G, Morris JT, Moran BM (2004) Dimethylsulphopropionate (DMSP) and related compounds in higher plants. J Exp Bot 55(404):1919–1925

    Article  CAS  PubMed  Google Scholar 

  • Ouyang S, Bell R (2004) The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:360–363

    Article  Google Scholar 

  • Parisod C, Salmon A, Zerjal T, Tenaillon M, Grandbastien M, Ainouche M (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184:1003–1015

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Peterson DG, Tomkins JP, Frisch DA, Wing RA, Paterson AH (2000) Construction of plant bacterial artificial chromosome (BAC) libraries: an illustrated guide. J Agric Genomics 5. www.ncgr.org/research/jag.

  • Peterson PM, Romaschenko K, Johnson G (2010) A classification of the Chloridoideae (Poaceae) based on multi-gene phylogenetic trees. Mol Phylogenet Evol 55:580–598

    Article  CAS  PubMed  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H et al (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  CAS  PubMed  Google Scholar 

  • Prasad V, Stromberg CAE, Leache AD, Samant B, Patnaik R, Tang L et al (2011) Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. Nat Commun 2:480

    Article  CAS  PubMed  Google Scholar 

  • Ragupathy R, Rathinavelu R, Cloutier S (2011) Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome. BMC Genomics 12:217

    Article  CAS  PubMed  Google Scholar 

  • Ramanarao MV, Weindorf D, Breitenbeck G, Baisakh N (2011) Differential expression of the transcripts of Spartina alterniflora Loisel (Smooth Cordgrass) induced in response to petroleum hydrocarbon. Mol Biotechnol 51:18–26

    Article  Google Scholar 

  • Raybould AF, Gray AJ, Lawrence MJ, Marshall DF (1991) The evolution of Spartina anglica CE Hubbard (Gramineae)—origin and genetic variability. Biol J Linn Soc Lond 43:111–126

    Article  Google Scholar 

  • Renny-Byfield S, Ainouche M, Leitch IJ, Lim KY, Le Comber SC, Leitch AR (2010) Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritima origin. Ann Bot 105:527–533

    Article  PubMed  Google Scholar 

  • Roodt R, Spies JJ (2003a) Chromosome studies in the grass subfamily Chloridoideae. I. Basic chromosome numbers. Taxon 52:557–566

    Article  Google Scholar 

  • Roodt R, Spies JJ (2003b) Chromosome studies in the grass subfamily Chloridoideae. II. An analysis of polyploidy. Taxon 52:736–746

    Article  Google Scholar 

  • Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM et al (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell Online 20:11

    Article  CAS  Google Scholar 

  • See DR, Brooks S, Nelson JC, Brown-Guedira G, Friebe B, Gill BS (2006) Gene evolution at the ends of wheat chromosomes. Proc Natl Acad Sci USA 103:4162–4167

    Article  CAS  PubMed  Google Scholar 

  • Srinivasachary, Dida MM, Gale MD, Devos KM (2007) Comparative analyses reveal high levels of conserved colinearity between the finger millet and rice genomes. Theor Appl Genet 115:489–499

    Article  CAS  PubMed  Google Scholar 

  • Terol J, Naranjo MA, Ollitrault P, Talon M (2008) Development of genomic resources for Citrus clementina: characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genomics 9:423

    Article  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    CAS  PubMed  Google Scholar 

  • Timmers RA, Strik DPBTB, Hamelers HVM, Buisman CJN (2010) Long-term performance of a plant microbial fuel cell with Spartina anglica. Appl Microbiol Biotechnol 86:973–981

    Article  CAS  PubMed  Google Scholar 

  • Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103:17638–17643

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Gu YQ, Hu Y, You FM, Dandekar AM, Leslie CA et al (2011) Characterizing the walnut genome through analyses of BAC end sequences. Plant Mol Biol 78:95–107

    Article  PubMed  Google Scholar 

  • Yannic G, Baumel A, Ainouche M (2004) Uniformity of the nuclear and chloroplast genomes of Spartina maritima (Poaceae), a salt-marsh species in decline along the Western European Coast. Heredity 93:182–188

    Article  CAS  PubMed  Google Scholar 

  • You F, Huo N, Gu Y, Luo M, Ma Y, Hane D et al (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9:253

    Article  PubMed  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  Google Scholar 

  • Yu J-K, Sun Q, Rota ML, Edwards H, Tefera H, Sorrells ME (2006) Expressed sequence tag analysis in tef Eragrostis tef (Zucc) Trotter. Genome 49:365–372

    Article  CAS  PubMed  Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E et al (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Ayele M, Tefera H, Nguyen HT (2001) RFLP linkage map of the Ethiopian cereal tef: Eragrostis tef (Zucc) Trotter. Theor Appl Genet 102:957–964

    Article  CAS  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K et al (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CNRS INEE and University of Rennes 1, the Partner University Funds and by the Genoscope (GENOSPART Project). The analyses benefited from the Genouest (Bioinformatics) Plateform facilities. J. Ferreira de Carvalho benefited from a Ph.D. Grant (ARED EVOSPART) from the Regional Council of Brittany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ainouche.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira de Carvalho, J., Chelaifa, H., Boutte, J. et al. Exploring the genome of the salt-marsh Spartina maritima (Poaceae, Chloridoideae) through BAC end sequence analysis. Plant Mol Biol 83, 591–606 (2013). https://doi.org/10.1007/s11103-013-0111-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0111-7

Keywords

Navigation