Skip to main content
Log in

Ectopic expression of a maize calreticulin mitigates calcium deficiency-like disorders in sCAX1-expressing tobacco and tomato

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Deregulated expression of an Arabidopsis H+/Ca2+ antiporter (sCAX1) in agricultural crops increases total calcium (Ca2+) but may result in yield losses due to Ca2+ deficiency-like symptoms. Here we demonstrate that co-expression of a maize calreticulin (CRT, a Ca2+ binding protein located at endoplasmic reticulum) in sCAX1-expressing tobacco and tomato plants mitigated these adverse effects while maintaining enhanced Ca2+ content. Co-expression of CRT and sCAX1 could alleviate the hypersensitivity to ion imbalance in tobacco plants. Furthermore, blossom-end rot (BER) in tomato may be linked to changes in CAX activity and enhanced CRT expression mitigated BER in sCAX1 expressing lines. These findings suggest that co-expressing Ca2+ transporters and binding proteins at different intracellular compartments can alter the content and distribution of Ca2+ within the plant matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akesson A, Persson S, Love J, Boss WF, Widell S, Sommarin M (2005) Overexpression of the Ca2+-binding protein calreticulin in the endoplasmic reticulum improves growth of tobacco cell suspensions (Nicotiana tabacum) in high-Ca2+ medium. Physiol Plantarum 123:92–99

    Article  CAS  Google Scholar 

  • Bachrach LK (2001) Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab 12:22–28

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1990) Tissue-specific expression from CaMV 35S-enhancer subdomains in early stages of plant development. EMBO J 9:1677–1684

    PubMed  CAS  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46:95–122

    Article  CAS  Google Scholar 

  • Christensen A, Svensson K, Persson S, Michalak M, Jung J, Michalak M, Widell S, Sommarin M (2008) Functional characterization of Arabidopsis calreticulin1a; a key alleviator of endoplasmic reticulum stress. Plant Cell Physiol 49:912–924

    Article  PubMed  CAS  Google Scholar 

  • Christensen A, Svensson K, Thelin L, Zhang W, Tintor N, Prins D, Funke N, Michalak M, Schulze-Lefert P, Saijo Y, Sommarin M, Widell S, Persson S (2010) Higher plant calreticulins have acquired specialized functions in Arabidopsis. PLoS ONE 5:e11342

    Article  PubMed  Google Scholar 

  • Conn SJ, Gilliham M, Athman A, Schreiber AW, Baumann U, Moller I, Cheng NH, Stancombe MA, Hirschi KD, Webb AAR, Burton R, Kaiser BN, Tyerman SD, Leigh RA (2011) Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 23:240–257

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  PubMed  CAS  Google Scholar 

  • Crofts A, Denecke J (1998) Calreticulin and calnexin in plants. Trends Plant Sci 3:396

    Article  Google Scholar 

  • Dayod M, Tyerman SD, Leigh RA, Gilliham M (2010) Calcium storage in plants and the implications for calcium biofortification. Protoplasma 247:215–231

    Article  PubMed  CAS  Google Scholar 

  • de Freitas ST, do Amarante CVT, Labavitch JM, Mitcham EJ (2010) Cellular approach to understand bitter pit development in apple fruit. Postharvest Biol Technol 57:6–13

    Article  Google Scholar 

  • de Freitas ST, Padda M, Wu QY, Park S, Mitcham EJ (2011) Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis. Plant Physiol 156:844–855

    Article  Google Scholar 

  • de Freitas S, Handa AK, Wu Q, Park S, Mitcham EJ (2012) Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit. Plant J 71:824–835

    Google Scholar 

  • Gelli A, Blumwald E (1993) Calcium retrieval from vacuolar pools—characterization of a vacuolar calcium-channel. Plant Physiol 102:1139–1146

    PubMed  CAS  Google Scholar 

  • Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11:2113–2122

    PubMed  CAS  Google Scholar 

  • Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136:2438–2442

    Article  PubMed  CAS  Google Scholar 

  • Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421

    Article  PubMed  CAS  Google Scholar 

  • Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci USA 93:8782–8786

    Article  PubMed  CAS  Google Scholar 

  • Ho LC, White PJ (2005) A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann Bot 95:571–581

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of Vir-region and T-region of the Agrobacterium-tumefaciens Ti-Plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Holsters M, Dewaele D, Depicker A, Messens E, Vanmontagu M, Schell J (1978) Transfection and transformation of Agrobacterium-tumefaciens. Mol Gen Genet 163:181–187

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general-method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Iwano M, Entani T, Shiba H, Kakita M, Nagai T, Mizuno H, Miyawaki A, Shoji T, Kubo K, Isogai A, Takayama S (2009) Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol 150:1322–1334

    Article  PubMed  CAS  Google Scholar 

  • Jia XY, He LH, Jing RL, Li RZ (2009) Calreticulin: conserved protein and diverse functions in plants. Physiol Plantarum 136:127–138

    Article  CAS  Google Scholar 

  • Karley AJ, White PJ (2009) Moving cationic minerals to edible tissues: potassium, magnesium, calcium. Curr Opin Plant Biol 12:291–298

    Article  PubMed  CAS  Google Scholar 

  • Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K (2012) FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca2+ dynamics. Plant J 69:181–192

    Article  PubMed  CAS  Google Scholar 

  • Lee LY, Kononov ME, Bassuner B, Frame BR, Wang K, Gelvin SB (2007) Novel plant transformation vectors containing the superpromoter. Plant Physiol 145:1294–1300

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Massonneau A, Frangne N (2000) Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol 41:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Mei H, Zhao J, Pittman JK, Lachmansingh J, Park S, Hirschi KD (2007) In planta regulation of the Arabidopsis Ca2+/H+ antiporter CAX1. J Exp Bot 58:3419–3427

    Article  PubMed  CAS  Google Scholar 

  • Morris J, Hawthorne KM, Hotze T, Abrams SA, Hirschi KD (2008) Nutritional impact of elevated calcium transport activity in carrots. Proc Natl Acad Sci USA 105:1431–1435

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Park YD, Papp I, Moscone EA, Iglesias VA, Vaucheret H, Matzke AJM, Matzke MA (1996) Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J 9:183–194

    Article  PubMed  CAS  Google Scholar 

  • Park S, Morris JL, Park JE, Hirschi KD, Smith RH (2003) Efficient and genotype-independent Agrobacterium—mediated tomato transformation. J Plant Physiol 160:1253–1257

    Article  PubMed  CAS  Google Scholar 

  • Park S, Kim CK, Pike LM, Smith RH, Hirschi KD (2004) Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+ transporter. Mol Breed 14:275–282

    Article  Google Scholar 

  • Park S, Cheng NH, Pittman JK, Yoo KS, Park J, Smith RH, Hirschi KD (2005a) Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters. Plant Physiol 139:1194–1206

    Article  PubMed  CAS  Google Scholar 

  • Park S, Kang TS, Kim CK, Han JS, Kim S, Smith RH, Pike LM, Hirschi KD (2005b) Genetic manipulation for enhancing calcium content in potato tuber. J Agric Food Chem 53:5598–5603

    Article  PubMed  CAS  Google Scholar 

  • Park S, Elless MP, Park J, Lim W, Hirschi KD (2008) Genetic manipulation for enhancing calcium uptake in lettuce. In Vitro Cell Dev-An 44:S54–S55

    Google Scholar 

  • Park S, Elless MP, Park J, Jenkins A, Lim W, Chambers E, Hirschi KD (2009) Sensory analysis of calcium-biofortified lettuce. Plant Biotechnol J 7:106–117

    Article  PubMed  CAS  Google Scholar 

  • Persson S, Wyatt SE, Love J, Thompson WF, Robertson D, Boss WF (2001) The Ca2+ status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants. Plant Physiol 126:1092–1104

    Article  PubMed  CAS  Google Scholar 

  • Persson S, Rosenquist M, Svensson K, Galvao R, Boss W, Sommarin M (2003) Phylogenic analyses and expression studies reveal two distinct groups of calreticulin isoforms in higher plants. Plant Physiol 133:1385–1396

    Article  PubMed  CAS  Google Scholar 

  • Pittman JK, Hirschi KD (2001) Regulation of CAX1, an Arabidopsis Ca2+/H+ antiporter. Identification of an N-terminal autoinhibitory domain. Plant Physiol 127:1020–1029

    Article  PubMed  CAS  Google Scholar 

  • Pittman JK, Hirschi KD (2003) Don’t shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Curr Opin Plant Biol 6:257–262

    Article  PubMed  CAS  Google Scholar 

  • Punshon T, Guerinot ML, Lanzirotti A (2009) Using synchrotron X-ray fluorescence microprobes in the study of metal homeostasis in plants. Ann Bot 103:665–672

    Article  PubMed  CAS  Google Scholar 

  • Punshon T, Hirschi K, Yang J, Lanzirotti A, Lai B, Guerinot ML (2012) The role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed. Plant Physiol 158:352–362

    Article  PubMed  CAS  Google Scholar 

  • Saure MC (2001) Blossom-end rot of tomato (Lycopersicon esculentum Mill.)—a calcium- or a stress-related disorder? Sci Hortic 90:193–208

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  PubMed  CAS  Google Scholar 

  • Wyatt SE, Tsou PL, Robertson D (2002) Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants. Transgenic Res 11:1–10

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Connorton JM, Guo YQ, Li XK, Shigaki T, Hirschi KD, Pittman JK (2009) Functional studies of split Arabidopsis Ca2+/H+ exchangers. J Biol Chem 284:34075–34083

    Article  PubMed  CAS  Google Scholar 

  • Zucchi R, RoncaTestoni S (1997) The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 49:1–51

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Kansas State University AES project NAHF381121 (to SHP), the NIHHS RDA-KSU Cooperative Research Project (JSH) and the Technology Development Program for Agriculture and Forestry, Ministry of Agriculture and Forestry, Republic of Korea (CKK). We thank Dr. Wendy Boss for her inspiration and Dr. Staffan Persson (Max-Planck-Institute, Germany) for supplying the pE1775::CRT expression vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghun Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 553 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Shigaki, T., Han, JS. et al. Ectopic expression of a maize calreticulin mitigates calcium deficiency-like disorders in sCAX1-expressing tobacco and tomato. Plant Mol Biol 80, 609–619 (2012). https://doi.org/10.1007/s11103-012-9970-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9970-6

Keywords

Navigation