Advertisement

Plant Molecular Biology

, Volume 80, Issue 6, pp 609–619 | Cite as

Ectopic expression of a maize calreticulin mitigates calcium deficiency-like disorders in sCAX1-expressing tobacco and tomato

  • Qingyu Wu
  • Toshiro Shigaki
  • Jeung-Sul Han
  • Chang Kil Kim
  • Kendal D. Hirschi
  • Sunghun ParkEmail author
Article

Abstract

Deregulated expression of an Arabidopsis H+/Ca2+ antiporter (sCAX1) in agricultural crops increases total calcium (Ca2+) but may result in yield losses due to Ca2+ deficiency-like symptoms. Here we demonstrate that co-expression of a maize calreticulin (CRT, a Ca2+ binding protein located at endoplasmic reticulum) in sCAX1-expressing tobacco and tomato plants mitigated these adverse effects while maintaining enhanced Ca2+ content. Co-expression of CRT and sCAX1 could alleviate the hypersensitivity to ion imbalance in tobacco plants. Furthermore, blossom-end rot (BER) in tomato may be linked to changes in CAX activity and enhanced CRT expression mitigated BER in sCAX1 expressing lines. These findings suggest that co-expressing Ca2+ transporters and binding proteins at different intracellular compartments can alter the content and distribution of Ca2+ within the plant matrix.

Keywords

Calcium CAX CRT Co-expression Tomato 

Notes

Acknowledgments

This research was supported by the Kansas State University AES project NAHF381121 (to SHP), the NIHHS RDA-KSU Cooperative Research Project (JSH) and the Technology Development Program for Agriculture and Forestry, Ministry of Agriculture and Forestry, Republic of Korea (CKK). We thank Dr. Wendy Boss for her inspiration and Dr. Staffan Persson (Max-Planck-Institute, Germany) for supplying the pE1775::CRT expression vector.

Supplementary material

11103_2012_9970_MOESM1_ESM.doc (554 kb)
Supplementary material 1 (DOC 553 kb)

References

  1. Akesson A, Persson S, Love J, Boss WF, Widell S, Sommarin M (2005) Overexpression of the Ca2+-binding protein calreticulin in the endoplasmic reticulum improves growth of tobacco cell suspensions (Nicotiana tabacum) in high-Ca2+ medium. Physiol Plantarum 123:92–99CrossRefGoogle Scholar
  2. Bachrach LK (2001) Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab 12:22–28PubMedCrossRefGoogle Scholar
  3. Benfey PN, Ren L, Chua NH (1990) Tissue-specific expression from CaMV 35S-enhancer subdomains in early stages of plant development. EMBO J 9:1677–1684PubMedGoogle Scholar
  4. Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46:95–122CrossRefGoogle Scholar
  5. Christensen A, Svensson K, Persson S, Michalak M, Jung J, Michalak M, Widell S, Sommarin M (2008) Functional characterization of Arabidopsis calreticulin1a; a key alleviator of endoplasmic reticulum stress. Plant Cell Physiol 49:912–924PubMedCrossRefGoogle Scholar
  6. Christensen A, Svensson K, Thelin L, Zhang W, Tintor N, Prins D, Funke N, Michalak M, Schulze-Lefert P, Saijo Y, Sommarin M, Widell S, Persson S (2010) Higher plant calreticulins have acquired specialized functions in Arabidopsis. PLoS ONE 5:e11342PubMedCrossRefGoogle Scholar
  7. Conn SJ, Gilliham M, Athman A, Schreiber AW, Baumann U, Moller I, Cheng NH, Stancombe MA, Hirschi KD, Webb AAR, Burton R, Kaiser BN, Tyerman SD, Leigh RA (2011) Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 23:240–257PubMedCrossRefGoogle Scholar
  8. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861PubMedCrossRefGoogle Scholar
  9. Crofts A, Denecke J (1998) Calreticulin and calnexin in plants. Trends Plant Sci 3:396CrossRefGoogle Scholar
  10. Dayod M, Tyerman SD, Leigh RA, Gilliham M (2010) Calcium storage in plants and the implications for calcium biofortification. Protoplasma 247:215–231PubMedCrossRefGoogle Scholar
  11. de Freitas ST, do Amarante CVT, Labavitch JM, Mitcham EJ (2010) Cellular approach to understand bitter pit development in apple fruit. Postharvest Biol Technol 57:6–13CrossRefGoogle Scholar
  12. de Freitas ST, Padda M, Wu QY, Park S, Mitcham EJ (2011) Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis. Plant Physiol 156:844–855CrossRefGoogle Scholar
  13. de Freitas S, Handa AK, Wu Q, Park S, Mitcham EJ (2012) Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit. Plant J 71:824–835Google Scholar
  14. Gelli A, Blumwald E (1993) Calcium retrieval from vacuolar pools—characterization of a vacuolar calcium-channel. Plant Physiol 102:1139–1146PubMedGoogle Scholar
  15. Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11:2113–2122PubMedGoogle Scholar
  16. Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136:2438–2442PubMedCrossRefGoogle Scholar
  17. Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421PubMedCrossRefGoogle Scholar
  18. Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci USA 93:8782–8786PubMedCrossRefGoogle Scholar
  19. Ho LC, White PJ (2005) A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann Bot 95:571–581PubMedCrossRefGoogle Scholar
  20. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of Vir-region and T-region of the Agrobacterium-tumefaciens Ti-Plasmid. Nature 303:179–180CrossRefGoogle Scholar
  21. Holsters M, Dewaele D, Depicker A, Messens E, Vanmontagu M, Schell J (1978) Transfection and transformation of Agrobacterium-tumefaciens. Mol Gen Genet 163:181–187PubMedCrossRefGoogle Scholar
  22. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general-method for transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  23. Iwano M, Entani T, Shiba H, Kakita M, Nagai T, Mizuno H, Miyawaki A, Shoji T, Kubo K, Isogai A, Takayama S (2009) Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol 150:1322–1334PubMedCrossRefGoogle Scholar
  24. Jia XY, He LH, Jing RL, Li RZ (2009) Calreticulin: conserved protein and diverse functions in plants. Physiol Plantarum 136:127–138CrossRefGoogle Scholar
  25. Karley AJ, White PJ (2009) Moving cationic minerals to edible tissues: potassium, magnesium, calcium. Curr Opin Plant Biol 12:291–298PubMedCrossRefGoogle Scholar
  26. Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K (2012) FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca2+ dynamics. Plant J 69:181–192PubMedCrossRefGoogle Scholar
  27. Lee LY, Kononov ME, Bassuner B, Frame BR, Wang K, Gelvin SB (2007) Novel plant transformation vectors containing the superpromoter. Plant Physiol 145:1294–1300PubMedCrossRefGoogle Scholar
  28. Martinoia E, Massonneau A, Frangne N (2000) Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol 41:1175–1186PubMedCrossRefGoogle Scholar
  29. Mei H, Zhao J, Pittman JK, Lachmansingh J, Park S, Hirschi KD (2007) In planta regulation of the Arabidopsis Ca2+/H+ antiporter CAX1. J Exp Bot 58:3419–3427PubMedCrossRefGoogle Scholar
  30. Morris J, Hawthorne KM, Hotze T, Abrams SA, Hirschi KD (2008) Nutritional impact of elevated calcium transport activity in carrots. Proc Natl Acad Sci USA 105:1431–1435PubMedCrossRefGoogle Scholar
  31. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497CrossRefGoogle Scholar
  32. Park YD, Papp I, Moscone EA, Iglesias VA, Vaucheret H, Matzke AJM, Matzke MA (1996) Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J 9:183–194PubMedCrossRefGoogle Scholar
  33. Park S, Morris JL, Park JE, Hirschi KD, Smith RH (2003) Efficient and genotype-independent Agrobacterium—mediated tomato transformation. J Plant Physiol 160:1253–1257PubMedCrossRefGoogle Scholar
  34. Park S, Kim CK, Pike LM, Smith RH, Hirschi KD (2004) Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+ transporter. Mol Breed 14:275–282CrossRefGoogle Scholar
  35. Park S, Cheng NH, Pittman JK, Yoo KS, Park J, Smith RH, Hirschi KD (2005a) Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters. Plant Physiol 139:1194–1206PubMedCrossRefGoogle Scholar
  36. Park S, Kang TS, Kim CK, Han JS, Kim S, Smith RH, Pike LM, Hirschi KD (2005b) Genetic manipulation for enhancing calcium content in potato tuber. J Agric Food Chem 53:5598–5603PubMedCrossRefGoogle Scholar
  37. Park S, Elless MP, Park J, Lim W, Hirschi KD (2008) Genetic manipulation for enhancing calcium uptake in lettuce. In Vitro Cell Dev-An 44:S54–S55Google Scholar
  38. Park S, Elless MP, Park J, Jenkins A, Lim W, Chambers E, Hirschi KD (2009) Sensory analysis of calcium-biofortified lettuce. Plant Biotechnol J 7:106–117PubMedCrossRefGoogle Scholar
  39. Persson S, Wyatt SE, Love J, Thompson WF, Robertson D, Boss WF (2001) The Ca2+ status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants. Plant Physiol 126:1092–1104PubMedCrossRefGoogle Scholar
  40. Persson S, Rosenquist M, Svensson K, Galvao R, Boss W, Sommarin M (2003) Phylogenic analyses and expression studies reveal two distinct groups of calreticulin isoforms in higher plants. Plant Physiol 133:1385–1396PubMedCrossRefGoogle Scholar
  41. Pittman JK, Hirschi KD (2001) Regulation of CAX1, an Arabidopsis Ca2+/H+ antiporter. Identification of an N-terminal autoinhibitory domain. Plant Physiol 127:1020–1029PubMedCrossRefGoogle Scholar
  42. Pittman JK, Hirschi KD (2003) Don’t shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Curr Opin Plant Biol 6:257–262PubMedCrossRefGoogle Scholar
  43. Punshon T, Guerinot ML, Lanzirotti A (2009) Using synchrotron X-ray fluorescence microprobes in the study of metal homeostasis in plants. Ann Bot 103:665–672PubMedCrossRefGoogle Scholar
  44. Punshon T, Hirschi K, Yang J, Lanzirotti A, Lai B, Guerinot ML (2012) The role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed. Plant Physiol 158:352–362PubMedCrossRefGoogle Scholar
  45. Saure MC (2001) Blossom-end rot of tomato (Lycopersicon esculentum Mill.)—a calcium- or a stress-related disorder? Sci Hortic 90:193–208CrossRefGoogle Scholar
  46. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511PubMedCrossRefGoogle Scholar
  47. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84PubMedCrossRefGoogle Scholar
  48. Wyatt SE, Tsou PL, Robertson D (2002) Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants. Transgenic Res 11:1–10PubMedCrossRefGoogle Scholar
  49. Zhao J, Connorton JM, Guo YQ, Li XK, Shigaki T, Hirschi KD, Pittman JK (2009) Functional studies of split Arabidopsis Ca2+/H+ exchangers. J Biol Chem 284:34075–34083PubMedCrossRefGoogle Scholar
  50. Zucchi R, RoncaTestoni S (1997) The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 49:1–51PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Qingyu Wu
    • 1
    • 2
  • Toshiro Shigaki
    • 3
  • Jeung-Sul Han
    • 4
  • Chang Kil Kim
    • 5
  • Kendal D. Hirschi
    • 6
  • Sunghun Park
    • 1
    Email author
  1. 1.Department of Horticulture, Forestry and Recreation ResourcesKansas State UniversityManhattanUSA
  2. 2.Cold Spring Harbor LaboratoryCold Spring HarborUSA
  3. 3.Papua New Guinea National Agricultural Research InstituteLaePapua New Guinea
  4. 4.Department of Ecological EnvironmentKyungpook National UniversitySangjuRepublic of Korea
  5. 5.Department of Horticultural ScienceKyungpook National UniversitySangjuRepublic of Korea
  6. 6.United States Department of Agriculture/Agricultural Research Service, Children’s Nutrition Research CenterBaylor College of MedicineHoustonUSA

Personalised recommendations