Skip to main content
Log in

Proteomic approach to analyze dormancy breaking of tree seeds

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In forest broadleaves from the temperate zone, a large number of species exhibit seed dormancy phenomena. Tree seeds show some of the most pronounced and complicated forms of dormancy in the plant kingdom. Many seeds are deeply physiologically dormant whatever their moisture level and age. However, dormancy can usually be overcome by a cold or warm stratification for several months. The transition from seed dormancy to germination is a multi-step process. In combination with the availability of genome sequence data, proteomics has opened up enormous possibilities for identifying the total set of expressed proteins as well as expression changes during dormancy breaking. The proteomic approach used for analysis of dormancy breaking of tree seeds offers new data allowing better understanding of the mechanism of deep physiological dormancy. The results of proteomic studies on dormancy breaking and the presence of abscisic and gibberellic acids in tree seeds (beech Fagus sylvatica L., Norway maple Acer platanoides L. and sycamore Acer pseudoplatanus L.), help to explain this process better. Most of the changes in protein expression were observed at the end of stratification and in the germinated seeds. This is the most active period of dormancy breaking when seeds pass from the quiescent state to germination. The analysis of the proteins’ function showed that the mechanism of seed dormancy breaking involves many processes. Energy metabolism, proteasome, transcription, protein synthesis, signal transduction and methionine metabolism proteins have a special importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alkhalfioui F, Renard M, Vensel W, Wong J, Tanaka C, Hurkman W, Buchanan B, Montrichard F (2007) Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds. Plant Physiol 144:1559–1579

    Article  CAS  PubMed  Google Scholar 

  • Auld KL, Silver PA (2006) Transcriptional regulation by the proteasome as a mechanism for cellular protein homeostasis. Cell Cycle 5:1503–1505

    CAS  PubMed  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Bais H, Ravishankar G (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34

    Article  CAS  Google Scholar 

  • Baskin J, Baskin C (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Google Scholar 

  • Baumbusch LO, Hughes DW, Galau GA, Jakobsen KS (2004) LEC1, FUS3, ABI3 and Em expression reveals no correlation with dormancy in Arabidopsis. J Exp Bot 55:77–87

    Article  CAS  PubMed  Google Scholar 

  • Black M, Bewley JD, Halmer P (2008) The encyclopedia of seeds. Science technology and uses. CABI, Wallingford

    Google Scholar 

  • Cadman C, Toorop P, Hilhorst H, Finch-Savage W (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46:805–822

    Article  CAS  PubMed  Google Scholar 

  • Calvo ES, Rodermel SR, Shoemaker RC (1994) A third highly conserved group 1 Lea gene from Arabidopsis thaliana L. Plant Physiol 106:787–788

    Article  CAS  PubMed  Google Scholar 

  • Calvo A, Nicolas C, Nicolas G, Rodriguez D (2004) Evidence of a cross-talk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. Physiol Plant 120:623–630

    Article  CAS  PubMed  Google Scholar 

  • Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin P (2006) Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiol 142:1493–1510

    Article  CAS  PubMed  Google Scholar 

  • Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E (2006) Integration of abscisic acid signalling into plant responses. Plant Biol 8:314–325

    Article  CAS  PubMed  Google Scholar 

  • Delseny M, Bies-Etheve N, Carles C, Hull G, Vicient C, Raynal M, Grellet F, Aspart L (2001) Late embryogenesis abundant (LEA) protein gene regulation during Arabidopsis seed maturation. J Plant Physiol 158:419–427

    Article  CAS  Google Scholar 

  • Faivre-Nitschke SE, Couée I, Vermel M, Grienenberger JM, Gualberto JM (2001) Purification, characterization and cloning of isovaleryl-CoA dehydrogenase from higher plant mitochondria. Eur J Bioch/FEBS 268:1332–1339

    Article  CAS  Google Scholar 

  • Finch-Savage W, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    CAS  PubMed  Google Scholar 

  • Finch-Savage W, Cadman C, Toorop P, Lynn J, Hilhorst H (2007) Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J 51:60–78

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Job C, Groot S, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Job C, Groot S, Puype M, Demol H, Vandekerckhove J, Job D (2002a) Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129:823–837

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Job C, Groot S, Puype M, Demol H, Vandekerckhove J, Job D (2002b) Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiol Plant 116:238–247

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Firnhaber C, Zuber H, Hericher D, Belghazi M, Henry C, Kuster H, Thompson R (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds: evidence for metabolic specialization of maternal and filial tissues. Mol Cell Proteomics 6:2165–2179

    Article  CAS  PubMed  Google Scholar 

  • Gazzarrini S, McCourt P (2003) Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us. Ann Botany 91:605–612

    Article  CAS  Google Scholar 

  • Hallet BP, Bewley JD (2002) Membranes and seed dormancy: beyond the anaesthic hypothesis. Seed Sci Res 8:77–90

    Google Scholar 

  • Han B, Hughes DW, Galau GA, Bewley JD, Kermode AR (1997) Changes in late-embryogenesis-abundant (LEA) messenger RNAs and dehydrins during maturation and premature drying of Ricinus communis L. seeds. Planta 201:27–35

    Article  CAS  PubMed  Google Scholar 

  • Haslekås C, Viken MK, Grini PE, Nygaard V, Nordgard SH, Meza TJ, Aalen RB (2003) Seed 1-cysteine peroxiredoxin antioxidants are not involved in dormancy, but contribute to inhibition of germination during stress. Plant Physiol 133:1148–1157

    Article  PubMed  Google Scholar 

  • Hong TD, Ellis RH (1990) A comparison of maturation drying, germination, and desiccation tolerance between developing seeds of Acer pseudoplatanus L. and Acer platanoides L. New Phytol 116:589–596

    Article  Google Scholar 

  • Isola M, Franzoni L (2000) Changes of aspartate aminotransferase activity, its isoform pattern, and free amino acids content in peanut cotyledons during seed germination. Acta Physiologiae Plantarum 22:125–128

    Article  CAS  Google Scholar 

  • Jones HD, Kurup S, Peters NC, Holdsworth MJ (2000) Identification and analysis of proteins that interact with the Avena fatua homologue of the maize transcription factor VIVIPAROUS 1. Plant J 21:133–142

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kang S, Wang W, Kim S, Hwang D, Kang K (2008) Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 8:3577–3587

    Article  CAS  PubMed  Google Scholar 

  • Krawiarz K, Szczotka Z (2000) Activity of ATPases during dormancy breaking in Norway maple (Acer platanoides L.) seeds. Acta Soc Bot Pol 69:119–121

    CAS  Google Scholar 

  • Krawiarz K, Szczotka Z (2005) Adenine nucleotides and energy charge during dormancy breaking in embryo axes of Acer platanoides and Fagus sylvatica seeds. Acta Physiol Plant 27:455–461

    Article  CAS  Google Scholar 

  • Kucera B, Cohn M, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sc Res 15:281–307

    Article  CAS  Google Scholar 

  • Kurup S, Jones HD, Holdsworth MJ (2000) Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J 21:143–155

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Chien C, Lin C, Chiu Y, Yang Y (2006) Protein changes between dormant and dormancy-broken seeds of Prunus campanulata Maxim. Proteomics 6:4147–4154

    Article  CAS  PubMed  Google Scholar 

  • Leon R, Bassham D, Owen M (2007) Thermal and hormonal regulation of the dormancy-germination transition in Amaranthus tuberculatus seeds. Weed Res 47:335–344

    Article  CAS  Google Scholar 

  • Leon-Lobos P, Ellis R (2002) Seed storage behaviour of Fagus sylvatica and Fagus crenata. Seed Sci Res 12:31–37

    Article  Google Scholar 

  • Li B, Foley ME (1995) Cloning and characterization of differentially expressed genes in imbibed dormant and afterripened Avena fatua embryos. Plant Mol Biol 29:823–831

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Nicolas C, Nicolas G, Rodriguez D (2002) Molecular cloning of a functional protein phosphatase 2C (FsPP2C2) with unusual features and synergistically up-regulated by ABA and calcium in dormant seeds of Fagus sylvatica. Physiol Plant 114:482–490

    Article  CAS  PubMed  Google Scholar 

  • Matilla A (2000) Ethylene in seed formation and germination. Seed Sci Res 10:111–126

    CAS  Google Scholar 

  • Morelli JK, Shewmaker CK, Vayda ME (1994) Biphasic stimulation of translational activity correlates with induction of translation Elongation Factor 1 subunit [alpha] upon wounding in potato tubers. Plant Physiol 106:897–903

    CAS  PubMed  Google Scholar 

  • Mortensen L, Eriksen E (2004) The effect of gibberellic acid, paclobutrazol and ethephon on the germination of Fagus sylvatica and Picea sitchensis seeds exposed to varying durations of moist chilling. Seed Sci Tech 32:21–33

    Google Scholar 

  • Mortensen LC, Rodríguez D, Nicolás G, Eriksen EN, Nicolás C (2004) Decline in a seed-specific abscisic acid-responsive glycine-rich protein (GRPF1) mRNA may reflect the release of seed dormancy in Fagus sylvatica during moist prechilling. Seed Sci Res 14:27–34

    Article  CAS  Google Scholar 

  • Nagao M, Parimoo B, Tanaka K (1993) Developmental, nutritional, and hormonal regulation of tissue-specific expression of the genes encoding various acyl-CoA dehydrogenases and alpha-subunit of electron transfer flavoprotein in rat. J Biol Chem 268:24114–24124

    CAS  PubMed  Google Scholar 

  • Nicolás C, Rodríguez D, Poulsen F, Eriksen EN, Nicolás G (1997) The expression of an abscisic acid-responsive glycine-rich protein coincides with the level of seed dormancy in Fagus sylvatica. Plant Cell Physiol 38:1303–1310

    PubMed  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  CAS  PubMed  Google Scholar 

  • Olszewski N, Sun T, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80

    CAS  PubMed  Google Scholar 

  • Oracz K, Bouteau H, Farrant J, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50:452–465

    Article  CAS  PubMed  Google Scholar 

  • Østergaard H, Rasmussen S, Roberts T, Hejgaard J (2000) Inhibitory serpins from wheat grain with reactive centers resembling glutamine-rich repeats of prolamin storage proteins—cloning and characterization of five major molecular forms. J Biol Chem 275:33272–33279

    Article  PubMed  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    Article  CAS  PubMed  Google Scholar 

  • Park S, Rancour D, Bednarek S (2008) In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation. Plant Physiol 148:246–258

    Article  CAS  PubMed  Google Scholar 

  • Pawłowski TA (2007) Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: Influence of abscisic and gibberellic acids. Proteomics 7:2246–2257

    Article  PubMed  Google Scholar 

  • Pawłowski TA (2009) Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids. BMC Plant Biol 9:48

    Google Scholar 

  • Pawłowski T, Szczotka Z (1997) Qualitative changes in protein content during cold and warm stratification of Norway maple (Acer platanoides L.) seeds. Seed Sci Res 7:385–390

    Google Scholar 

  • Pawłowski TA, Bergervoet J, Bino R, Groot S (2004) Cell cycle activity and β-tubulin accumulation during dormancy breaking of Acer platanoides L. seeds. Biologia Plant 48:211–218

    Article  Google Scholar 

  • Penfield S, Hall A (2009) A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell. doi: 10.1105/tpc.108.064022

  • Penfield S, Josse E, Kannangara R, Gilday A, Halliday K, Graham I (2005) Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr Biol 15:1998–2006

    Article  CAS  PubMed  Google Scholar 

  • Penfield S, Gilday A, Halliday K, Graham I (2006) DELLA-mediated cotyledon expansion breaks coat-imposed seed dormancy. Curr Biol 16:2366–2370

    Article  CAS  PubMed  Google Scholar 

  • Pinfield NJ, Stutchbury PA, Bazaid SA, Gwarazimba VE (1990) Abscisic acid and the regulation of embryo dormancy in the genus Acer. Tree Physiol 6:79–85

    CAS  PubMed  Google Scholar 

  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–2745

    Article  CAS  PubMed  Google Scholar 

  • Piskurewicz U, Turečková V, Lacombe E, Lopez-Molina L (2009) Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. The EMBO J. doi: 10.1038/emboj.2009.170

  • Pukacka S (1983) Phospholipid changes and loss of viability in Norway maple (Acer platanoides L.) seeds. Zeitschrift fiir Pflanzenphysiologie 112:199–205

    CAS  Google Scholar 

  • Pukacka S, Czubak A (1998) The effect of desiccation on viability and membrane lipid composition of Acer pseudoplatanus seeds. Acta Soc Bot Pol 67:249–252

    CAS  Google Scholar 

  • Pukacka S, Ratajczak E (2005) Production and scavenging of reactive oxygen species in Fagus sylvatica seeds during storage at varied temperature and humidity. J Plant Physiol 162:873–885

    Article  CAS  PubMed  Google Scholar 

  • Pukacka S, Ratajczak E (2007) Ascorbate and glutathione metabolism during development and desiccation of orthodox and recalcitrant seeds of the genus Acer. Funct Plant Biol 34:601–613

    Article  CAS  Google Scholar 

  • Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Nat Acad Sci USA 95:7805–7812

    Article  CAS  PubMed  Google Scholar 

  • Rocha PSCF, Sheikh M, Melchiorre R, Fagard M, Boutet S, Loach R, Moffatt B, Wagner C, Vaucheret H, Furner I (2005) The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 gene codes for an S-adenosyl-L-homocysteine hydrolase required for DNA methylation-dependent gene silencing. Plant Cell 17:404–417

    Article  CAS  PubMed  Google Scholar 

  • Satoh S, Esashi Y (1979) Protein synthesis in dormant and non-dormant cocklebur seed segments. Physiol Plant 47:229–234

    Article  CAS  Google Scholar 

  • Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta 220:183–197

    Article  CAS  PubMed  Google Scholar 

  • Seo M, Nambara E, Choi G, Yamaguchi S (2009) Interaction of light and hormone signals in germinating seeds. Plant Mol Biol 69:463–472

    Article  CAS  PubMed  Google Scholar 

  • Shen S, Sharma A, Komatsu S (2003) Characterization of proteins responsive to gibberellin in the leaf-sheath of rice (Oryza sativa L.) seedling using proteome analysis. Biol Pharm Bull 26:129–136

    Article  CAS  PubMed  Google Scholar 

  • Smalle J, Kurepa J, Yang P, Emborg TJ, Babiychuk E, Kushnir S, Vierstra RD (2003) The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling. Plant Cell 15:965–980

    Article  CAS  PubMed  Google Scholar 

  • Steffens B, Wang J, Sauter M (2006) Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223:604–612

    Article  CAS  PubMed  Google Scholar 

  • Stephen J, Dent K, Finch-Savage W (2003) A cDNA encoding a cold-induced glycine-rich RNA binding protein from Prunus avium expressed in embryonic axes. Gene 320:177–183

    Article  CAS  PubMed  Google Scholar 

  • Stephen J, Dent K, Finch-Savage W (2004) Molecular responses of Prunus avium (wild cherry) embryonic axes to temperatures affecting dormancy. New Phytol 161:401–413

    Article  CAS  Google Scholar 

  • Suszka B, Muller C, Bonnet-Masimbert M (1996) Seeds of forest broadleaves. From harvest to sowing. INRA, Paris

    Google Scholar 

  • Szczotka Z, Lewandowska U, Jakubowski H (1988) Endogenous and exogenous polyamines in dormancy breaking of Acer platanoides seeds under condition of cold stratification. Acta Physiol Plant 10:181–189

    CAS  Google Scholar 

  • Szczotka Z, Pawłowski T, Krawiarz K (2003) Proteins and polyamines during dormancy breaking of European beech (Fagus sylvatica L.) seeds. Acta Physiol Plant 25:423–435

    Article  CAS  Google Scholar 

  • Thompson J, Hopkins M, Taylor C, Wang T (2004) Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci 9:174–179

    Article  CAS  PubMed  Google Scholar 

  • Twardowski T, Szczotka Z (1989) The influence of selected polyamines on elongation binding factor 1 activity during the stratification of Norway maple seeds. J Plant Physiol 134:32–36

    CAS  Google Scholar 

  • Vashisht AA, Pradhan A, Tuteja R, Tuteja N (2005) Cold- and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C. Plant J 44:76–87

    Article  CAS  PubMed  Google Scholar 

  • Wehmeyer N, Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol 122:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Wong P, Abubakar S (2005) Post-germination changes in Hevea brasiliensis seeds proteome. Plant Sci 169:303–311

    Article  CAS  Google Scholar 

  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7:3358–3368

    Article  CAS  PubMed  Google Scholar 

  • Zegzouti H, Jones B, Marty C, Lelievre J, Latche A, Pech J, Bouzayen M (1997) ER5, a tomato cDNA encoding an ethylene-responsive LEA-like protein: characterization and expression in response to drought, ABA and wounding. Plant Mol Biol 35:847–854

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V, Potokina E, Scholz U, Schweizer P, Zierold U, Langridge P, Varshney RK, Wobus U, Graner A (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Zofia Szczotka, Marzenna Guzicka and Kazimierz Krawiarz for their advice and helpful discussions. The work was supported by the Ministry of Science and Higher Education, Poland, grant number: N N309 2491 33.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Andrzej Pawłowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawłowski, T.A. Proteomic approach to analyze dormancy breaking of tree seeds. Plant Mol Biol 73, 15–25 (2010). https://doi.org/10.1007/s11103-010-9623-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9623-6

Keywords

Navigation