Skip to main content
Log in

OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Proline-rich protein (PRP), a cell wall protein of plant, has been studied in many plant species. Yet, none of the PRPs has been functionally elucidated. Here we report a novel flower-specific PRP designated OsPRP3 from rice. Expression analysis showed that the OsPRP3 transcript was mainly present in rice flower and accumulated abundantly during the late stage of the flower development. To study the function of OsPRP3, we constructed and transformed a binary vector containing a full clone of OsPRP3 in sense orientation and also an RNAi vector to achieve overexpression and knockout of the gene, respectively. Our overexpression plants showed a significant increase in cold tolerance than the WT plants which is conferred by the accumulation of OsPRP3 protein during cold treatment. Further the microscopic analysis revealed that OsPRP3 enhances the cell wall integrity in the cold tolerant plant and confers cold-tolerance in rice. Microscopic analysis of the RNAi mutant flower revealed that blocking OsPRP3 function caused significant defects in floral organogenesis. Taken together, the results suggested that OsPRP3 is a cell wall protein, playing a crucial role in determining extracellular matrix structure of floral organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguan K, Sugawara K, Suzuki N, Kusano T (1991) Isolation of genes for low-temperature-induced proteins in rice by a simple subtractive method. Plant Cell Physiol 32:1285–1289

    CAS  Google Scholar 

  • Akiyama T, Pillai MA (2003) Isolation and characterization of a gene for a repetitive proline rich protein (OsPRP) down regulated during submergence in rice (Oryza sativa). Physiol Plant 118:507–513

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Tear ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bernhardt C, Tierney ML (2000) Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type—specific developmental pathways involved in root hair formation. Plant Physiol 122:705–714

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Cassab GI (1998) Plant cell wall proteins. Annu Rev Plant Physiol Mol Biol 49:281–309

    Article  CAS  Google Scholar 

  • Chen J, Varner JE (1985) Isolation and characterization of cDNA clones for carrot extensin and proline-rich 33-kDa protein. Proc Natl Acad Sci USA 82:4399–4403

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Shomura A, Sasaki T, An G, Chung YY (2000) Molecular characterization of an anther preferential gene from rice. J Plant Biol 43:232–237

    Article  CAS  Google Scholar 

  • Davis HA, Findlay K, Daniels MJ, Dow JM (1997) A novel proline-rich glycoprotein associated with the extracellular matrix of vascular bundles of Brassica petioles. Planta 202:28–35

    Article  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Fowler TJ, Bernhardt CB, Tierney ML (1999) Characterization and expression of four proline-rich cell wall proteins in Arabidopsis encoding two distinct subsets of multiple domain proteins. Plant Physiol 121:1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Gothandam KM, Kim ES, Cho HJ, Chung YY (2005) OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol 58:421–433

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–181

    Article  CAS  Google Scholar 

  • Hong JC, Nagao RT, Key JL (1987) Characterization and sequence analysis of a developmentally regulated putative cell wall protein gene isolated from soybean. J Biol Chem 262:8367–8376

    CAS  PubMed  Google Scholar 

  • Hong JC, Nagao RT, Key JL (1989) Developmentally regulated expression of soybean proline-rich cell wall protein genes. Plant Cell 1:937–943

    Article  CAS  PubMed  Google Scholar 

  • Jeon JS, Chung YY, Lee S, Yi GH, Oh BG, An G (1999) Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa). Plant Mol Biol 39:35–44

    Article  CAS  PubMed  Google Scholar 

  • Kacperska A (1999) Plant responses to low temperature: signaling pathways involved in plant acclimation. In: Margesin R, Schinner F (eds) Cold-adapted organisms. Ecology, physiology, enzymology and molecular biology. Springer, Berlin, pp 79–103

    Google Scholar 

  • Kleis-San Francisco SM, Tierney ML (1990) Isolation and characterization of a proline-rich cell wall protein from soybean seedlings. Plant Physiol 94:1897–1902

    Article  CAS  Google Scholar 

  • Knox JP (1995) Developmentally regulated proteoglycans and glycoproteins of the plant cell surface. FASEB J 9:1004–1012

    CAS  PubMed  Google Scholar 

  • Koster KK, Lynch DV (1992) Solute accumulation and compartmentation during the cold acclimation of puma rye. Plant Physiol 98:108–113

    Article  CAS  PubMed  Google Scholar 

  • Lamport DTA (1965) The protein component of primary cell walls. Adv Bot Res 2:151–218

    Article  CAS  Google Scholar 

  • Lee S, Jeon JS, Jung KH, An G (1999) Binary vectors for efficient transformation of rice. J Plant Biol 42:310–316

    Article  CAS  Google Scholar 

  • Lee SC, Huh KW, An K, An G, Kim SR (2004) Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b in transgenic rice (Oryza sativa L.). Mol cell 18:107–114

    CAS  Google Scholar 

  • Li W, Li M, Zhang W, Welti R, Wang X (2004) The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nat Biotechnol 22:427–433

    Article  PubMed  Google Scholar 

  • Lindstrom JT, Vodkin LO (1991) A soybean cell wall protein is affected by seed color genotype. Plant Cell 3:561–571

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Marcus A, Greenberg J, Averyhart Fullard V (1991) Repetitive proline rich proteins in the extracellular matrix of the plant cell. Physiol Plant 81:273–279

    Article  CAS  Google Scholar 

  • Marshall JG, Dumbroff EB, Thatcher BJ, Martin B, Rutledge RG, Blumwald E (1999) Synthesis and oxidative insolubilization of cell-wall proteins during osmotic stress. Planta 208:401–408

    Article  CAS  PubMed  Google Scholar 

  • Menke U, Renault N, Mueller-Roeber B (2000) StGCPRP, a potato gene strongly expressed in stomatal guard cells, defines a novel type of repetitive proline-rich proteins. Plant Physiol 122:677–686

    Article  CAS  PubMed  Google Scholar 

  • Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45:445–450

    Article  Google Scholar 

  • Nicholas CD, Lindstrom JT, Vodkin LO (1993) Variation of proline rich cell wall proteins in soybean lines with anthocyanin mutations. Plant Mol Biol 21:145–156

    Article  CAS  PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  PubMed  Google Scholar 

  • Paleg LG, Stewart GR, Bradbeer JW (1984) Proline and glycine betaine influence protein solvation. Plant Physiol 75:974–978

    Article  CAS  PubMed  Google Scholar 

  • Perales L, Penarrubiab L, Cornejoa MJ (2008) Induction of a polyubiquitin gene promoter by dehydration stresses in transformed rice cells. J Plant Physiol 165:159–171

    Article  CAS  PubMed  Google Scholar 

  • Raines CA, Lloyd JC, John Chao SM, UP Murphy GJ (1991) A novel proline-rich protein from wheat. Plant Mol Biol 16:663–670

    Article  CAS  PubMed  Google Scholar 

  • Rudolph AS, Crowe JH, Crowe LM (1986) Effects of three stabilizing agents—proline, betaine and trehalose—on membrane phospholipids. Arch Biochem Biophys 245:134–143

    Article  CAS  PubMed  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+ dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  CAS  PubMed  Google Scholar 

  • Santarius KA (1992) Freezing of isolated thylakoid membranes in complex media. VIII. Differential cryoprotection by sucrose, proline and glycerol. Physiol Plant 84:87–93

    Article  CAS  Google Scholar 

  • Santino CG, Stanford GL, Conner TW (1997) Developmental and transgenic analysis of two tomato fruit enhanced genes. Plant Mol Biol 33:405–416

    Article  CAS  PubMed  Google Scholar 

  • Sheng J, D’Ovidio R, Mehdy MC (1991) Negative and positive regulation of a novel proline-rich protein mRNA by fungal elicitor and wounding. Plant J 1:345–354

    Article  CAS  PubMed  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    Article  CAS  PubMed  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paedez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2210

    Article  CAS  PubMed  Google Scholar 

  • Tierney ML, Wiechert J, Pluymers D (1988) Analysis of the expression of extension and p33-related cell wall proteins in carrot and soybean. Mol Gen Genet 211:393–399

    Article  CAS  Google Scholar 

  • Vaner JE, Lin LS (1989) Plant cell wall architecture. Cell 56:231–239

    Article  Google Scholar 

  • Vignols F, Jose-Estanyol M, Caparros-Ruiz D (1999) Involvement of a maize proline-rich protein in secondary cell wall formation as deduced from its specific mRNA isolation. Plant Mol Biol 39:945–952

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Chong K, Wang T (2006) Divergence in spatial expression patterns and in response to stimuli of tandem repeat paralogues encoding a novel class of proline rich proteins in Oryza sativa. J Exp Bot 57:2887–2897

    Article  CAS  PubMed  Google Scholar 

  • Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–400

    Article  CAS  PubMed  Google Scholar 

  • Wilson RC, Cooper JB (1994) Characterization of PRP1 and PRP2 from Medicago truncatula. Plant Physiol 105:445–446

    Article  CAS  PubMed  Google Scholar 

  • Wu XH, Mao AJ, Wang R, Wang T, Song Y, Tong Z (2003) Cloning and characterization of OsPRP1 involved in anther development in rice. Chin Sci Bull 48:2458–2465

    CAS  Google Scholar 

  • Wyatt RE, Nagao RT, Key JL (1992) Patterns of soybean proline-rich protein gene expression. Plant Cell 4:99–110

    Article  CAS  PubMed  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen activated protein kinase. Plant cell 15:745–759

    Article  CAS  PubMed  Google Scholar 

  • Yelenosky G (1979) Accumulation of free proline in citrus leaves during cold hardening of young trees in controlled temperature regimes. Plant Physiol 64:425–427

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kodiveri Muthukalianan Gothandam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 678 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gothandam, K.M., Nalini, E., Karthikeyan, S. et al. OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. Plant Mol Biol 72, 125–135 (2010). https://doi.org/10.1007/s11103-009-9557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9557-z

Keywords

Navigation