Skip to main content
Log in

Expression of vacuolar H+-pyrophosphatase (OVP3) is under control of an anoxia-inducible promoter in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Vacuolar H+-pyrophosphatase (V-PPase) expression increases in a number of abiotic stresses and is thought to play a role in adaptation to abiotic stresses. This paper reports on the regulation of six V-PPase genes in rice (Oryza sativa L.) coleoptiles under anoxia, using flood tolerant and intolerant cultivars to test our hypothesis. Quantitative PCR analysis showed that one vacuolar H+-pyrophosphatase (OVP3) was induced by anoxia, particularly in flood-tolerant rice. Regulation of OVP3 expression under anoxia was investigated by analysing putative OVP promoters. The putative OVP3 promoter contained more previously identified anoxia-inducible motifs than the putative promoters of the other five OVP genes. GUS activity in transgenic rice plants containing the OVP3 promoter region linked to the GUS reporter gene was induced only by anoxia. Salt and cold treatments had little effect on OVP3 promoter-driven GUS expression when compared to the anoxic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alpi A, Beevers H (1983) Effects of O2 concentration on rice seedlings. Plant Physiol 71:30–34

    Article  CAS  PubMed  Google Scholar 

  • Atwell BJ, Rees T (1986) Distribution of protein synthesized by seedlings of Oryza sativa grown in anoxia. J Plant Physiol 123:401–408

    CAS  Google Scholar 

  • Atwell BJ, Waters I, Greenway H (1982) The effect of oxygen and turbulence on elongation of coleoptiles of submergence-tolerant and -intolerant rice cultivars. J Exp Bot 33:1030–1044

    Article  CAS  Google Scholar 

  • Baltscheffsky M, Schultz A, Baltscheffsky H (1999) H+-PPases: a tightly membrane-bound family. FEBS Lett 457:527–533

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breyne P, De Loose M, Dedonder A, Van Montagu M, Depicker A (1993) Quantitative kinetic analysis of β-glucuronidase activities using a computer-directed microtiter plate reader. Plant Mol Biol Rep 11:21–31

    Article  CAS  Google Scholar 

  • Brini F, Gaxiola RA, Berkowitz GA, Masmoudi K (2005) Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiol Biochem 43:347–354

    CAS  PubMed  Google Scholar 

  • Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB (2004) The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 134:224–236

    Article  CAS  PubMed  Google Scholar 

  • Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1, 3;1, 4)-β-D-glucans. Science 311:1940–1942

    Article  CAS  PubMed  Google Scholar 

  • Carystinos GD, MacDonald HR, Monroy AF, Dhindsa RS, Poole RJ (1995) Vacuolar H+-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol 108:641–649

    Article  CAS  PubMed  Google Scholar 

  • Choura M, Rebai A (2005) Identification and characterization of new members of vacuolar H+-pyrophosphatase family from Oryza sativa genome. Russ J Plant Physiol 52:821–825

    Article  CAS  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  CAS  PubMed  Google Scholar 

  • Dolferus R, Jacobs M, Peacock WJ, Dennis ES (1994) Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiol 105:1075–1087

    Article  CAS  PubMed  Google Scholar 

  • Drozdowicz YM, Rea PA (2001) Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6:206–211

    Article  CAS  PubMed  Google Scholar 

  • Felle HH (2005) pH regulation in anoxic plants. Ann Bot 96:519–532

    Article  CAS  PubMed  Google Scholar 

  • Fennoy SL, Bailey-Serres J (1995) Post-transcriptional regulation of gene expression in oxygen-deprived roots of maize. Plant J 7:287–295

    Article  CAS  Google Scholar 

  • Freeling M, Bennett DC (1985) Maize Adhl. Annu Rev Genet 19:297–323

    CAS  PubMed  Google Scholar 

  • Fukuda A, Chiba K, Maeda M, Nakamura A, Maeshima M, Tanaka Y (2004) Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. J Exp Bot 55:585–594

    Article  CAS  PubMed  Google Scholar 

  • Geffers R, Cerff R, Hehl R (2000) Anaerobiosis-specific interaction of tobacco nuclear factors with cis-regulatory sequences in the maize GapC4 promoter. Plant Mol Biol 43:11–21

    Article  CAS  PubMed  Google Scholar 

  • Geffers R, Sell S, Cerff R, Hehl R (2001) The TATA box and a Myb binding site are essential for anaerobic expression of a maize GapC4 minimal promoter in tobacco. Biochim Biophys Acta 1521:120–125

    CAS  PubMed  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  Google Scholar 

  • Golldack D, Dietz KJ (2001) Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol 125:1643–1654

    Article  CAS  PubMed  Google Scholar 

  • Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30:999–1036

    Article  CAS  Google Scholar 

  • Hoeren FU, Dolferus R, Wu Y, Peacock WJ, Dennis ES (1998) Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics 149:479–490

    CAS  PubMed  Google Scholar 

  • Howell KA, Narsai R, Carroll A, Ivanova A, Lohse M, Usadel B, Millar AH, Whelan J (2009) Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiol 149:961–980

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Greenway H, Colmer TD (2003) Anoxia tolerance in rice seedlings: exogenous glucose improves growth of an anoxia-’intolerant’, but not of a ‘tolerant’ genotype. J Exp Bot 54:2363–2373

    Article  CAS  PubMed  Google Scholar 

  • Kasai M, Nakamura T, Kudo N, Sato H, Maeshima M, Sawada S (1998) The activity of the root vacuolar H+-pyrophosphatase in rye plants grown under conditions deficient in mineral nutrients. Plant Cell Physiol 39:890–894

    CAS  PubMed  Google Scholar 

  • Kim Y, Kim EJ, Rea PA (1994) Isolation and characterization of cDNAs encoding the vacuolar H+-pyrophosphatase of Beta vulgaris. Plant Physiol 106:375–382

    Article  CAS  PubMed  Google Scholar 

  • Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lehr A, Kirsch M, Viereck R, Schiemann J, Rausch T (1999) cDNA and genomic cloning of sugar beet V-type H+-ATPase subunit A and c isoforms: evidence for coordinate expression during plant development and coordinate induction in response to high salinity. Plant Mol Biol 39:463–475

    Article  CAS  PubMed  Google Scholar 

  • Lerchl J, König S, Zrenner R, Sonnewald U (1995) Molecular cloning, characterization and expression analysis of isoforms encoding tonoplast-bound proton-translocating inorganic pyrophosphatase in tobacco. Plant Mol Biol 29:833–840

    Article  CAS  PubMed  Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    Article  CAS  PubMed  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497

    Article  CAS  PubMed  Google Scholar 

  • Massonneau A, Martinoia E, Dietz KJ, Mimura T (2000) Phosphate uptake across the tonoplast of intact vacuoles isolated from suspension-cultured cells of Catharanthus roseus (L.) G. Don. Planta 211:390–395

    Article  CAS  PubMed  Google Scholar 

  • Menegus F, Cattaruzza L, Mattana M, Beffagna N, Ragg E (1991) Response to anoxia in rice and wheat seedlings: changes in the pH of intracellular compartments, glucose-6-phosphate level, and metabolic rate. Plant Physiol 95:760–767

    Article  CAS  PubMed  Google Scholar 

  • Mimura H, Nakanishi Y, Hirono M, Maeshima M (2004) Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis. J Biol Chem 279:35106–35112

    Article  CAS  PubMed  Google Scholar 

  • Mohanty B, Krishnan SPT, Swarup S, Bajic VB (2005) Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Ann Bot 96:669–681

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  Google Scholar 

  • Okimoto R, Sachs MM, Porter EK, Freeling M (1980) Patterns of polypeptide synthesis in various maize organs under anaerobiosis. Planta 150:89–94

    Article  CAS  Google Scholar 

  • Olive MR, Walker JC, Singh K, Dennis ES, Peacock WJ (1990) Functional properties of the anaerobic responsive element of the maize Adh1 gene. Plant Mol Biol 15:593–604

    Article  CAS  PubMed  Google Scholar 

  • Olive MR, Peacock WJ, Dennis ES (1991) The anaerobic responsive element contains two GC-rich sequences essential for binding a nuclear protien and hypoxic activation of the maize Adh1 promoter. Nucleic Acids Res 19:7053–7060

    Article  CAS  PubMed  Google Scholar 

  • Peter Verrijzer C, Tjian R (1996) TAFs mediate transcriptional activation and promoter selectivity. Trends Biochem Sci 21:338–342

    Google Scholar 

  • Rea PA, Poole RJ (1993) Vacuolar H+ -translocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol 44:157–180

    CAS  Google Scholar 

  • Rea P, Kim Y, Sarafian V, Poole R, Davies J, Sanders D (1992) Vacuolar H+-translocating pyrophosphatase: a new category of ion translocase. TIBS 17:348–352

    CAS  PubMed  Google Scholar 

  • Roberts JKM, Callis J, Jardetzky O, Walbot V, Freeling M (1984) Cytoplasmic acidosis as a determinant of flooding intolerance in plants. PNAS 81:6029–6033

    Article  CAS  PubMed  Google Scholar 

  • Sachs MM, Subbaiah CC, Saab IN (1996) Anaerobic gene expression and flooding tolerance in maize. J Exp Bot 47:1–15

    Article  CAS  Google Scholar 

  • Sakakibara Y, Kobayashi H, Kasamo K (1996) Isolation and characterization of cDNAs encoding vacuolar H+-pyrophosphatase isoforms from rice (Oryza sativa L.). Plant Mol Biol 31:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara Y, Kasamo K, Kobayashi H, Kusakabe I, Kawasaki S (1999) Identification of the gene structure and promoter region of H+-translocating inorganic pyrophosphatase in rice (Oryza sativa L.). Biochim Biophys Acta 1444:117–124

    CAS  PubMed  Google Scholar 

  • Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk PB, Rueb S, Delseny M, Guiderdoni E (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396–1408

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 121–131

    Google Scholar 

  • Sarafian V, Poole R (1989) Purification of H+-translocating inorganic pyrophosphatase from vacuole membranes of red beet. Plant Physiol 91:34–38

    Article  CAS  PubMed  Google Scholar 

  • Sarafian V, Kim Y, Poole RJ, Rea PA (1992) Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. PNAS 89:1775–1779

    Article  CAS  PubMed  Google Scholar 

  • Stitt M (1998) Pyrophosphate as an energy donor in the cytosol of plant cells: an enigmatic alternative to ATP. Bot Acta 111:167–175

    CAS  Google Scholar 

  • Stomp A (1992) Histochemical localization of β-glucuronidase. In: Gallagher SR (ed) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press, San Diego, pp 103–113

    Google Scholar 

  • Takasu A, Nakanishi Y, Yamauchi T, Maeshima M (1997) Analysis of the substrate binding site and carboxyl terminal region of vacuolar H+-pyrophosphatase of Mung bean with peptide antibodies. J Biochem 122:883–889

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Chiba K, Maeda M, Maeshima M (1993) Molecular cloning of cDNA for vacuolar membrane proton-translocating inorganic pyrophosphatase in Hordeum vulgare. Biochem Biophys Res Commun 190:1110–1114

    Article  CAS  PubMed  Google Scholar 

  • Thomson CJ, Greenway H (1991) Metabolic evidence for stelar anoxia in maize roots exposed to low O2 concentrations. Plant Physiol 96:1294–1301

    Article  PubMed  Google Scholar 

  • Tsiantis MS, Bartholomew DM, Smith JA (1996) Salt regulation of transcript levels for the c subunit of a leaf vacuolar H+-ATPase in the halophyte Mesembryanthemum crystallinum. Plant J 9:729–736

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–11

    Article  Google Scholar 

  • Walker JC, Howard EA, Dennis ES, Peacock WJ (1987) DNA sequences required for anaerobic expression of the maize alcohol dehydrogenase 1 gene. PNAS 84:6624–6628

    Article  CAS  PubMed  Google Scholar 

  • Xia J-H, Saglio P, Roberts J (1985) Nucleotide levels do not critically determine survival of maize root tips acclimated to a low-oxygen environment. Plant Physiol 1995:589–595

    Google Scholar 

Download references

Acknowledgments

We thank Olivier Cotsaftis for expert assistance with rice transformation, Andrew Harvey for sequence analysis, Ezaz Mamun for vacuole isolation and Gwenda Mayo for technical support involving microscopy. We are also grateful to Masayoshi Maeshima (Nagoya University, Japan) for the gift of the anti-V-PPase and anti-V-ATPase antibodies. This research was made possible through the generosity of the Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Atwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Zhang, Q., Burton, R.A. et al. Expression of vacuolar H+-pyrophosphatase (OVP3) is under control of an anoxia-inducible promoter in rice. Plant Mol Biol 72, 47–60 (2010). https://doi.org/10.1007/s11103-009-9549-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9549-z

Keywords

Navigation