Skip to main content
Log in

Identification and Characterization of New Members of Vacuolar H+-Pyrophosphatase Family from Oryza sativa Genome

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The vacuolar H+-pyrophosphatase (V-PPase) is an electrogenic H+ pump localized in the plant vacuolar membrane. V-PPase from many species has been characterized previously and the corresponding genes/cDNAs have been cloned. Cloning of the V-PPase genes from many plant species has revealed conserved motifs that may correspond to catalytic sites. The completion of the entire DNA sequence of Oryza sativa (430 Mb) presented an opportunity to study the structure and function of V-PPase proteins, and also to identify new members of this family in Oryza sativa. Our analysis identified three novel V-PPase proteins in the Oryza sativa genome that contain functional domains typical of V-PPase. We have designated them as OVP3 to OVP5. The new predicted OVPs have chromosomal locations different from previously characterized V-PPases (OVP1 and OVP2) located on chromosome 6. They all contain three characteristic motifs of V-PPase and also a conserved motif [DE]YYTS, specific to type I V-PPases and involved in coupling PPi hydrolysis to H+ translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EST:

expressed sequence tag

Pi :

inorganic phosphate

PPi :

inorganic pyrophosphate

PPase:

pyrophosphatase

TMS:

transmembrane spanning

V-ATPase:

vacuolar H+-ATPase

V-PPase:

vacuolar H+-inorganic pyrophosphatase

REFERENCES

  1. Ohta, M., Hayashi, Y., Nakashima, A., Hamada, A., Tanaka, A., Nakamura, A., and Hayakawa, T., Introduction of a H+-Pyrophosphatase Gene from Atriplex gmelini Confers Salt Tolerance to Rice, Biochim. Biophys. Acta, 2002, vol. 532, pp. 279–282.

    CAS  Google Scholar 

  2. Rea, P.A. and Poole, R.J., Vacuolar H+-Translocating Pyrophosphatase, Plant. Mol. Biol., 1993, vol. 44, pp. 157–180.

    CAS  Google Scholar 

  3. Fukuda, A., Chiba, K., Maeda, M., Nakamura, A., Maeshima, M., and Tanaka, Y., Effect of Salt and Osmotic Stresses on the Expression of Genes for the Vacuolar H+-Pyrophosphatase, H+-ATPase Subunit A, and Na+/H+ Antiporter from Barley, J. Exp. Bot., 2004, vol. 397, pp. 585–594.

    Google Scholar 

  4. Gaxiola, R.A., Li, J.S., Undurraga, S., Dang, L.M., Allen, G.J., Alper, S.L., and Fink, G.R., Drought-and Salt-Tolerant Plants Result from Overexpression of the AVP1 H+-Pump, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 11444–11449.

    Article  PubMed  CAS  Google Scholar 

  5. Maeshima, M., Vacuolar H+-Pyrophosphatase, Biochim. Biophys. Acta, 2000, vol. 1465, pp. 7–51.

    Google Scholar 

  6. Rea, P.A., Kim, Y., Sarafian, V., Poole, R.J., Davies, J.M., and Sanders, D., Vacuolar H+-Translocating Pyrophosphatases: A New Category of Ion Translocase, Trends Biochem. Sci., 1992, vol. 17, pp. 348–353.

    Article  PubMed  CAS  Google Scholar 

  7. Takasu, A., Nakanishi, Y., Yamauchi, T., and Maeshima, M., Analysis of the Substrate Binding Site and Carboxyl Terminal Region of Vacuolar H+-Pyrophosphatase of Mung Bean with Peptide Antibodies, J. Biochem., 1997, vol. 122, pp. 883–889.

    PubMed  CAS  Google Scholar 

  8. Tanaka, Y., Chiba, K., Maeda, M., and Maeshima, M., Molecular Cloning of cDNA for Vacuolar Membrane Proton-Translocating Inorganic Pyrophosphatase in Hordeum vulgare, Biochem. Biophys. Res. Commun., 1993, vol. 190, pp. 1110–1114.

    PubMed  CAS  Google Scholar 

  9. Drozdowicz, Y.M., Kissinger, J.C., and Rea, P.A., AVP2, a Sequence-Divergent, K(+)-Insensitive H(+)-Translocating Inorganic Pyrophosphatase from Arabidopsis, Plant Physiol., 2000, vol. 123, pp. 353–362.

    Article  PubMed  CAS  Google Scholar 

  10. Mitsuda, N., Takeyasu, K., and Sato, M.H., Pollen-Specific Regulation of Vacuolar H+-PPase Expression by Multiple cis-Acting Elements, Plant Mol. Biol., 2001, vol. 46, pp. 185–192.

    Article  PubMed  CAS  Google Scholar 

  11. Kim, Y., Kim, E.J., and Rea, P.A., Isolation and Characterization of cDNAs Encoding the Vacuolar H+-Pyrophosphatase of Beta vulgaris, Plant Physiol., 1994, vol. 106, pp. 375–382.

    PubMed  CAS  Google Scholar 

  12. Lerchl, J., Konig, S., Zrenner, R., and Sonnewald, U., Molecular Cloning, Characterization and Expression Analysis of Isoforms Encoding Tonoplast-Bound Proton-Translocating Inorganic Pyrophosphatase in Tobacco, Plant Mol. Biol., 1995, vol. 29, pp. 833–840.

    Article  PubMed  CAS  Google Scholar 

  13. Sakakibara, Y., Kobayashi, H., and Kasamo, K., Isolation and Characterization of cDNAs Encoding Vacuolar H+-Pyrophosphatase Isoforms from Rice (Oryza sativa L.), Plant Mol. Biol., 1996, vol. 31, pp. 1029–1038.

    Article  PubMed  CAS  Google Scholar 

  14. Sakakibara, Y., Kasamo, K., Kobayashi, H., Kusakabe, I., and Kawasaki, S., Identification of the Gene Structure and Promoter Region of H+-Translocating Inorganic Pyrophosphatase in Rice (Oryza sativa L.), Biochim. Biophys. Acta, 1999, vol. 1444, pp. 117–124.

    PubMed  CAS  Google Scholar 

  15. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  16. Tatusova, T.A. and Thomas, L.M., Blast 2 Sequences-A New Tool for Comparing Protein and Nucleotide Sequences, FEMS Microbiol. Lett., 1999, vol. 174, pp. 247–250.

    Article  PubMed  CAS  Google Scholar 

  17. Baxevanis, A.D., The Molecular Biology Database Collection 2003 Update, Nucleic Acids Res., 2003, vol. 31, pp. 1–12.

    Article  PubMed  CAS  Google Scholar 

  18. Marchler, G.H., Mazumder, R., Nikolskaya, A.N., Panchenko, A.R., Rao, B.S., Shoemaker, B.A., Simonyan, V., Song, J.S., Thiessen, P.A., Vasudevan, S., Wang, Y., Yamashita, R.A., Yin, J.J., and Bryant, S.H., CDD: A Curated Entree Database of Conserved Domain Alignments, Nucleic Acids Res., 2003, vol. 31, pp. 383–387.

    PubMed  Google Scholar 

  19. Tusnady, G.E. and Simon, I., Principles Governing Amino Acid Composition of Integral Membrane Proteins: Applications to Topology Prediction, J. Mol. Biol., 1998, vol. 283, pp. 489–506.

    Article  PubMed  CAS  Google Scholar 

  20. Thompson, J., Higgins, D.G., and Gibson, T.J., Clustal W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice, Nucleic Acids Res., 1994, vol. 22, pp. 4673–4680.

    PubMed  CAS  Google Scholar 

  21. Bailey, T.L. and Gribskov, M., Methods and Statistics for Combining Motif Match Scores, J. Comput. Biol., 1998, vol. 5, pp. 211–221.

    Article  PubMed  CAS  Google Scholar 

  22. Marchler-Bauer, A., Anderson, J.B., de Weese-Scott, C., Fedorova, N.D., Geer, L.Y., He, S., Hurwitz, D.I., Jackson, J.D., Jacobs, A.R., Lanczycki, C.J., Liebert, C.A., Liu, C., and Madej, T., The Rice Full-Length cDNA Consortium. Collection, Mapping, and Annotation of Over 28 000 cDNA Clones from Japonica Rice, Science, 2003, vol. 301, pp. 376–379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

From Fiziologiya Rastenii, Vol. 52, No. 6, 2005, pp. 926–930.

Original English Text Copyright © 2005 by Choura, Rebai.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choura, M., Rebai, A. Identification and Characterization of New Members of Vacuolar H+-Pyrophosphatase Family from Oryza sativa Genome. Russ J Plant Physiol 52, 821–825 (2005). https://doi.org/10.1007/s11183-005-0121-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11183-005-0121-7

Key words

Navigation