Skip to main content
Log in

Class III peroxidase: an indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Class III peroxidases are secretory enzymes which belong to a ubiquitous multigene family in higher plants and have been identified to play role in a broad range of physiological and developmental processes. Potentially, it is involved in generation and detoxification of hydrogen peroxide (H2O2), and their subcellular localization reflects through three different cycles, namely peroxidative cycle, oxidative and hydroxylic cycles to maintain the ROS level inside the cell. Being an antioxidant, class III peroxidases are an important initial defence adapted by plants to cope with biotic and abiotic stresses. Both these stresses have become a major concern in the field of agriculture due to their devastating effect on plant growth and development. Despite numerous studies on plant defence against both the stresses, only a handful role of class III peroxidases have been uncovered by its functional characterization. This review will cover our current understanding on class III peroxidases and the signalling involved in their regulation under both types of stresses. The review will give a view of class III peroxidases and highlights their indispensable role under stress conditions. Its future application will be discussed to showcase their importance in crop improvement by genetic manipulation and by transcriptome analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59

    PubMed Central  Google Scholar 

  • Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:87

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    CAS  Google Scholar 

  • Allison SD, Schultz JC (2004) Differential activity of peroxidase isozymes in response to wounding, gypsy moth, and plant hormones in northern red oak (Quercus rubra L.). J Chem Ecol 30:1363–1379

    CAS  PubMed  Google Scholar 

  • Almagro L, Gómez Ros L, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreno M (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    CAS  PubMed  Google Scholar 

  • Amaya I, Botella MA, de la Calle M, Medina MI, Heredia A, Bressan RA, Hasegawa PM, Quesada MA, Valpuesta V (1999) Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. Febs Lett 457:80–84

    CAS  PubMed  Google Scholar 

  • An D, Yang J, Zhang P (2012) Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genom 13:64

    CAS  Google Scholar 

  • Bach M, Schnitzler J-P, Seitz HU (1993) Elicitor-induced changes in Ca2+ influx, K+ efflux, and 4-hydroxybenzoic acid synthesis in protoplasts of Daucus carota L. Plant Physiol 103:407–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey BA, Strem MD, Bae H, De Mayolo GA, Guiltinan MJ (2005) Gene expression in leaves of Theobroma cacao in response to mechanical wounding, ethylene, and/or methyl jasmonate. Plant Sci 168:1247–1258

    CAS  Google Scholar 

  • Barceló AR, Ros LVG, Carrasco AE (2007) Looking for syringyl peroxidases. Trends Plant Sci 12:486–491

    PubMed  Google Scholar 

  • Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 115:1053–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernards MA, Fleming WD, Llewellyn DB, Priefer R, Yang X, Sabatino A, Plourde GL (1999) Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol 121:135–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya S, De Sarkar N, Banerjee P, Banerjee S, Mukherjee S, Chattopadhyay D, Mukhopadhyay A (2012) Effects of arsenic toxicity on germination, seedling growth and peroxidase activity in Cicer arietinum. Int J Agric Food Sci 2:131–137

    Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D, Tripathi RD (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702

    CAS  PubMed  Google Scholar 

  • Chakraborty N, Chandra S, Acharya K (2015) Sublethal heavy metal stress stimulates innate immunity in tomato. The Scientific World J

  • Chang M-L, Chen N-Y, Liao L-J, Cho C-L, Liu Z-H (2012) Effect of cadmium on peroxidase isozyme activity in roots of two Oryza sativa cultivars. Botanical Studies 53

  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    CAS  PubMed  Google Scholar 

  • Cheong YH, Chang H-S, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145:890–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosio C, Dunand C (2009) Specific functions of individual class III peroxidase genes. J Exp Bot 60:391–408

    CAS  PubMed  Google Scholar 

  • Cosio C, Vuillemin L, De Meyer M, Kevers C, Penel C, Dunand C (2009) An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta 229:823–836

    CAS  PubMed  Google Scholar 

  • Costa MM, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Memelink J, Barceló AR, Sottomayor M (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146:403–417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das SK, Patra JK, Thatoi H (2016) Antioxidative response to abiotic and biotic stresses in mangrove plants: A review. Int Rev Hydrobiol 101:3–19

    Google Scholar 

  • Daudi A, Cheng Z, O’Brien JA, Mammarella N, Khan S, Ausubel FM, Bolwell GP (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24:275–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faried HN et al (2017) Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation. J Sci Food Agric 97:1868–1875

    CAS  PubMed  Google Scholar 

  • Fawal N, Li Q, Savelli B, Brette M, Passaia G, Fabre M, Mathe C, Dunand C (2012) PeroxiBase: a database for large-scale evolutionary analysis of peroxidases. Nucleic Acids Res 41:D441–D444

    PubMed  PubMed Central  Google Scholar 

  • Fernandes CF, Moraes VC, Vasconcelos IM, Silveira JA, Oliveira JT (2006) Induction of an anionic peroxidase in cowpea leaves by exogenous salicylic acid. J Plant Physiol 163:1040–1048

    CAS  PubMed  Google Scholar 

  • Francoz E, Ranocha P, Nguyen-Kim H, Jamet E, Burlat V, Dunand C (2015) Roles of cell wall peroxidases in plant development. Phytochemistry 112:15–21

    CAS  PubMed  Google Scholar 

  • Gazaryan IG, Lagrimini LM, Ashby GA, Thorneley RN (1996) Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases. Biochem J 313:841–847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heggie L, Jansen MA, Burbridge EM, Kavanagh TA, Thorneley RN, Dix PJ (2005) Transgenic tobacco (Nicotiana tabacum L. cv. Samsun-NN) plants over-expressing a synthetic HRP-C gene are altered in growth, development and susceptibility to abiotic stress. Plant Physiol Biochem 43:1067–1073

    CAS  PubMed  Google Scholar 

  • Hiraga S, Ito H, Yamakawa H, Ohtsubo N, Seo S, Mitsuhara I, Matsui H, Honma M, Ohashi Y (2000a) An HR-induced tobacco peroxidase gene is responsive to spermine, but not to salicylate, methyl jasmonate, and ethephon. Mol Plant Microbe Interact 13:210–216

    CAS  PubMed  Google Scholar 

  • Hiraga S, Yamamoto K, Ito H, Sasaki K, Matsui H, Honma M, Nagamura Y, Sasaki T, Ohashi Y (2000b) Diverse expression profiles of 21 rice peroxidase genes. Febs Lett 471:245–250

    CAS  PubMed  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468

    CAS  PubMed  Google Scholar 

  • Hoffman T, Schmidt JS, Zheng X, Bent AF (1999) Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol 119:935–950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen MA, Elfstrand M, Heggie L, Sitbon F, Dix PJ, Thorneley RN (2004) Over-expression of phenol-oxidising peroxidases alters the UV-susceptibility of transgenic Nicotiana tabacum. New Phytol 163:585–594

    CAS  Google Scholar 

  • Jin J, Hewezi T, Baum TJ (2011) Arabidopsis peroxidase AtPRX53 influences cell elongation and susceptibility to Heterodera schachtii. Plant Signal Behav 6:1778–1786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin T, Sun Y, Zhao R, Shan Z, Gai J, Li Y (2019) Overexpression of peroxidase gene GsPRX9 confers salt tolerance in soybean. Int J Mol Sci 20:3745

    CAS  PubMed Central  Google Scholar 

  • Joseph B, Jini D, Sujatha S (2011) Development of salt stress-tolerant plants by gene manipulation of antioxidant enzymes Asian. J Agricul Res 5:17–27

    CAS  Google Scholar 

  • Jovanović SV, Kukavica B, Vidović M, Morina F, Menckhoff L (2018) Class III Peroxidases: Functions, Localization and Redox Regulation of Isoenzymes. Antioxidants and Antioxidant Enzymes in Higher Plants. Springer, Berlin, pp 269–300

    Google Scholar 

  • Kámán-Tóth E, Dankó T, Gullner G, Bozsó Z, Palkovics L, Pogány M (2019) Contribution of cell wall peroxidase-and NADPH oxidase-derived reactive oxygen species to Alternaria brassicicola-induced oxidative burst in Arabidopsis. Molecul Plant Pathol 20:485–499

    Google Scholar 

  • Kidwai M, Dhar YV, Gautam N, Tiwari M, Ahmad IZ, Asif MH, Chakrabarty D (2019) Oryza sativa class III peroxidase (OsPRX38) overexpression in Arabidopsis thaliana reduces arsenic accumulation due to apoplastic lignification. J Hazard Mater 362:383–393

    CAS  PubMed  Google Scholar 

  • Kim BH, Kim SY, Nam KH (2012) Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Molec Cells 34:539–548

    CAS  PubMed  Google Scholar 

  • Kis M, Burbridge E, Brock IW, Heggie L, Dix PJ, Kavanagh TA (2004) An N-terminal peptide extension results in efficient expression, but not secretion, of a synthetic horseradish peroxidase gene in transgenic tobacco. Ann Botany 93:303–310

    CAS  Google Scholar 

  • Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P (2018) Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings. Protoplasma 255:11–24

    CAS  PubMed  Google Scholar 

  • Kovtun Y, Chiu W-L, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceed National Acad Sci 97:2940–2945

    CAS  Google Scholar 

  • Kumar S, Jaggi M, Sinha AK (2012) Ectopic overexpression of vacuolar and apoplastic Catharanthus roseus peroxidases confers differential tolerance to salt and dehydration stress in transgenic tobacco. Protoplasma 249:423–432

    CAS  PubMed  Google Scholar 

  • Kumari A, Pandey-Rai S (2018) Enhanced arsenic tolerance and secondary metabolism by modulation of gene expression and proteome profile in Artemisia annua L. after application of exogenous salicylic acid. Plant Physiol Biochem 132:590–602

    CAS  PubMed  Google Scholar 

  • Kumari M, Taylor GJ, Deyholos MK (2008) Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Mol Genet Genom 279:339

    CAS  Google Scholar 

  • Li Q, Dou W, Qi J, Qin X, Chen S, He Y (2020) Genomewide analysis of the CIII peroxidase family in sweet orange (Citrus sinensis) and expression profiles induced by Xanthomonas citri subsp. citri and hormones. J Genet 99:10

    CAS  PubMed  Google Scholar 

  • Llorente F, López-Cobollo RM, Catalá R, Martínez-Zapater JM, Salinas J (2002) A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J 32:13–24

    CAS  PubMed  Google Scholar 

  • Lüthje S, Martinez-Cortes T (2018) Membrane-bound class III peroxidases: unexpected enzymes with exciting functions. Int J Molec Sci 19:2876

    Google Scholar 

  • Mammarella ND, Cheng Z, Fu ZQ, Daudi A, Bolwell GP, Dong X, Ausubel FM (2015) Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae. Phytochemistry 112:110–121

    CAS  PubMed  Google Scholar 

  • McInnis SM, Emery DC, Porter R, Desikan R, Hancock JT, Hiscock SJ (2006) The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae). J Experim Botany 57:1835–1846

    CAS  Google Scholar 

  • Mika A, Boenisch MJ, Hopff D, Lüthje S (2010) Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors. J Experim Botany 61:831–841

    CAS  Google Scholar 

  • Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452:55–68

    CAS  PubMed  Google Scholar 

  • Mohr PG, Cahill DM (2007) Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. Tomato. Funct Integ Genom 7:181–191

    CAS  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Nat Acad Sci 100:358–363

    CAS  PubMed  Google Scholar 

  • Movahed N, Pastore C, Cellini A, Allegro G, Valentini G, Zenoni S, Cavallini E, D’Incà E, Tornielli GB, Filippetti I (2016) The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature. J Plant Res 129:513–526

    CAS  PubMed  Google Scholar 

  • Mujer CV, Mendoza EMT, Ramirez DA (1983) Coconut peroxidase isoenzymes: isolation, partial purification and physicochemical properties. Phytochemistry 22:1335–1340

    CAS  Google Scholar 

  • Murtaza B, Naeem F, Shahid M, Abbas G, Shah NS, Amjad M, Bakhat HF, Imran M, Niazi NK, Murtaza G (2019) A multivariate analysis of physiological and antioxidant responses and health hazards of wheat under cadmium and lead stress. Environ Sci Pollut Res 26:362–370

    CAS  Google Scholar 

  • Neuhaus J-M, Sticher L, Meins F, Boller T (1991) A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proceed Nat Acad Sci 88:10362–10366

    CAS  Google Scholar 

  • Norman-Setterblad C, Vidal S, Palva ET (2000) Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant Microbe Interact 13:430–438

    CAS  PubMed  Google Scholar 

  • O’Brien JA, Daudi A, Finch P, Butt VS, Whitelegge JP, Souda P, Ausubel FM, Bolwell GP (2012) A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol 158:2013–2027

    PubMed  PubMed Central  Google Scholar 

  • Østergaard L, Teilum K, Mirza O, Mattsson O, Petersen M, Welinder KG, Mundy J, Gajhede M, Henriksen A (2000) Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Mol Biol 44:231–243

    PubMed  Google Scholar 

  • Pandey V, Awasthi M, Singh S, Tiwari S, Dwivedi U (2017) A comprehensive review on function and application of plant peroxidases Biochemistry and Analytical. Biochemistry 6:1–16

    Google Scholar 

  • Pandey VP, Dwivedi UN (2011) Purification and characterization of peroxidase from Leucaena leucocephala, a tree legume. J Molec Catal Enzym 68:168–173

    CAS  Google Scholar 

  • Pandey VP, Singh S, Singh R, Dwivedi UN (2012) Purification and characterization of peroxidase from papaya (Carica papaya) fruit. Appl Biochem Biotechnol 167:367–376

    CAS  PubMed  Google Scholar 

  • Park S, Ryu S, Kwon S, Lee H, Kim J, Kwak S (2003) Differential expression of six novel peroxidase cDNAs from cell cultures of sweetpotato in response to stress. Mol Genet Genomics 269:542–552

    CAS  PubMed  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    CAS  PubMed  Google Scholar 

  • Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65:1879–1893

    CAS  PubMed  Google Scholar 

  • Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534–540

    CAS  PubMed  Google Scholar 

  • Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, Teixera F, Margis-Pinheiro M, Ioannidis V, Penel C, Falquet L, Dunand C (2007) PeroxiBase: the peroxidase database. Phytochemistry 68:1605–1611

    CAS  PubMed  Google Scholar 

  • Passardi F, Tognolli M, De Meyer M, Penel C, Dunand C (2006) Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta 223:965–974

    CAS  PubMed  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    CAS  PubMed  Google Scholar 

  • Regalado C, Arvizu OP, Garcia-almendarez B, Whitaker J, (1999) Purification and properties of two acid peroxidases from brussels sprouts (Brassica oleraceae L.). J Food Biochem 23:435–450

  • Rios JA, Rodrigues FÁ, Debona D, Resende RS, Moreira WR, Andrade CCL (2014) Induction of resistance to Pyricularia oryzae in wheat by acibenzolar-S-methyl, ethylene and jasmonic acid. Trop Plant Pathol 39:224–233

    Google Scholar 

  • Rüffer M, Steipe B, Zenk MH (1995) Evidence against specific binding of salicylic acid to plant catalase. Febs Lett 377:175–180

    PubMed  Google Scholar 

  • Saidi I, Yousfi N, Borgi MA (2017) Salicylic acid improves the antioxidant ability against arsenic-induced oxidative stress in sunflower (Helianthus annuus) seedling. J Plant Nutr 40:2326–2335

    CAS  Google Scholar 

  • Salama I, Eliwa N, Mohamed M (2020) Effect of UV-A on vincristine biosynthesis and related peroxidase isozyme changes in Catharanthus roseus. J Rad Res Appl Sci 1–7

  • Seneviratne M, Rajakaruna N, Rizwan M, Madawala H, Ok YS, Vithanage M (2017) Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environm Geochem Health:1–19

  • Shahzad B, Fahad S, Tanveer M, Saud S, Khan IA (2019) Plant responses and tolerance to salt stress Approaches for enhancing abiotic stress tolerance in plants Taylor & Francis:61–77

  • Shigeto J, Tsutsumi Y (2016) Diverse functions and reactions of class III peroxidases. New Phytol 209:1395–1402

    CAS  PubMed  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Safety 72:1102–1110

    CAS  PubMed  Google Scholar 

  • Simo C, Djocgoue PF, Minyaka E, Omokolo N (2018) Guaiacol Peroxidase heritability in tolerance of Cocoa (Theobroma cacao L.) to Phytophthora megakarya, agent of Cocoa black pod disease. Int J Agricu Policy Res 6:7–20

    Google Scholar 

  • Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M, Mallick S, Pandey V, Trivedi PK, Chakrabarty D, Tripathi RD (2015) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L). Front Plant Sci 6:340

    PubMed  PubMed Central  Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Kumar N, Dixit S, Singh PK, Dwivedi S, Trivedi PK, Pandey V, Dhankher OP (2017) A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L). Plant Physiol Biochem 115:163–173

    CAS  PubMed  Google Scholar 

  • Sonkar KS, Pachauri M, Kumar A, Shukla A, Patel M, Jagannadham MV (2015) Heme-peroxidase from medicinal plant Artocarpus lakoocha: Purification, characterization and wound healing studies. Biocatal Agricul Biotechnol 4:180–190

    Google Scholar 

  • Sorokan A, Burhanova G, Maksimov I (2018) Anionic peroxidase-mediated oxidative burst requirement for jasmonic acid-dependent Solanum tuberosum defence against Phytophthora infestans. Plant Pathol 67:349–357

    CAS  Google Scholar 

  • Su P, Yan J, Li W, Wang L, Zhao J, Ma X, Li A, Wang H, Kong L (2020) A member of wheat class III peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress. BMC Plant Biol. https://doi.org/10.1186/s12870-020-02602-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomma BP, Eggermont K, Tierens KF-J, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tobias CM, Sarath G, Twigg P, Lindquist E, Pangilinan J, Penning BW, Barry K, McCann MC, Carpita NC, Lazo GR (2008) Comparative genomics in switchgrass using 61,585 high-quality expressed sequence tags. Plant Genome 1:111–124

    CAS  Google Scholar 

  • Vicuna Requesens D, Malone RP, Dix P (2014) Expression of a barley peroxidase in transgenic apple (Malus domestica L.) results in altered growth, xylem formation and tolerance to heat stress. J Plant Sci 9:58–66

    Google Scholar 

  • Wally O, Punja Z (2010) Enhanced disease resistance in transgenic carrot (Daucus carota L.) plants over-expressing a rice cationic peroxidase. Planta 232:1229–1239

    CAS  PubMed  Google Scholar 

  • Wang C-J, Chan Y-L, Shien CH, Yeh K-W (2015) Molecular characterization of fruit-specific class III peroxidase genes in tomato (Solanum lycopersicum). J Plant Physiol 177:83–92

    CAS  PubMed  Google Scholar 

  • Wang L-F, Wang J-K, An F, Xie G-S (2016) Molecular cloning and characterization of a stress responsive peroxidase gene HbPRX42 from rubber tree Brazilian. J Botany 39:475–483

    Google Scholar 

  • Wang Y, Wang Q, Zhao Y, Han G, Zhu S (2015) Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene 566:95–108

    CAS  PubMed  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environm 29:950–963

    CAS  Google Scholar 

  • Welinder KG (1992) Plant peroxidases: structure-funtion relationships. Plant Peroxidases 1980–1990:1–24

    Google Scholar 

  • Wu Y, Yang Z, How J, Xu H, Chen L, Li K (2017) Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Molec Biol 95:157–168

    CAS  Google Scholar 

  • Xu L, Fan Z, Dong Y, Kong J, Bai X 2015 Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress. Biologia plantarum 59:171–182

    CAS  Google Scholar 

  • Yan J, Su P, Li W, Xiao G, Zhao Y, Ma X, Wang H, Nevo E, Kong L (2019) Genome-wide and evolutionary analysis of the class III peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses. BMC Genomics 20:666

    PubMed  PubMed Central  Google Scholar 

  • Yusuf M, Fariduddin Q, Varshney P, Ahmad A (2012) Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environm Sci Poll Res 19:8–18

    CAS  Google Scholar 

  • Zhang T, Liu Y, Xue L, Xu S, Chen T, Yang T, Zhang L, An L (2006) Molecular cloning and characterization of a novel MAP kinase gene in Chorispora bungeana. Plant Physiol Biochem 44:78–84

    CAS  PubMed  Google Scholar 

  • Zhang H, He Y, Tan X, Xie K, Li L, Hong G, Li J, Cheng Y, Yan F, Chen J, Sun Z (2019) The dual effect of the brassinosteroid pathway on rice black-streaked dwarf virus infection by modulating the peroxidase-mediated oxidative burst and plant defense. Mol Plant Microbe Interact 32:685–696

    CAS  PubMed  Google Scholar 

  • Zhao L, Luan MT, Fitrianti AN, Matsui H, Nakagami H, Noutoshi Y, Yamamoto M, Ichinose Y, Shiraishi T, Toyoda K (2019) A class III peroxidase PRX34 is a component of disease resistance in Arabidopsis. J Gen Plant Pathol 85:405–412

    CAS  Google Scholar 

  • Zhu T, Deng X, Zhou X, Zhu L, Zou L, Li P, Zhang D, Lin H (2016) Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Sci Rep 6:35392

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We acknowledge the Director CSIR-NBRI for the facilities to carry out this work and Integral University for the registration (IU/R&D/2019-MCN000555).

Funding

This work was supported by UGC-MANF and OLP-104 for fundings.

Author information

Authors and Affiliations

Authors

Contributions

MK wrote the manuscript. DC and IZA read the manuscript and did the correction. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Debasis Chakrabarty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Neal Stewart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kidwai, M., Ahmad, I.Z. & Chakrabarty, D. Class III peroxidase: an indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. Plant Cell Rep 39, 1381–1393 (2020). https://doi.org/10.1007/s00299-020-02588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02588-y

Keywords

Navigation