Skip to main content
Log in

Expression of chlorophyll synthase is also involved in feedback-control of chlorophyll biosynthesis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

At the last step of the chlorophyll biosynthetic pathway chlorophyll synthase (CHLG) esterifies chlorophyllide a and b with phytyl or geranyl-geranyl pyrophosphate in chloroplasts. Transgenic tobacco plants expressing CHLG RNA in sense and antisense orientation were examined for the effects of excessive and reduced ectopic CHLG expression, respectively, on the chlorophyll biosynthetic pathway and the expression of chlorophyll-binding proteins. Reduced chlorophyll synthase activity does not result in accumulation of chlorophyllide and caused reduced ALA formation and Mg and ferrochelatase activity, while CHLG overexpression correlated with enhanced ALA synthesizing capacity and more chelatase activities. The transcript levels of genes expressing proteins of chlorophyll biosynthesis and chlorophyll-binding proteins were down-regulated in response to reduced CHLG expression. Thus, reduced expression and activity of chlorophyll synthase caused a feedback-controlled inactivation of the initial and rate limiting step of the pathway leading to down regulation of the metabolic flow, while overexpression can mediate a stimulation of the pathway. Chlorophyll synthase is proposed to be important for the co-regulation of the entire pathway and the coordination of synthesis of chlorophyll and the chlorophyll-binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALA:

5-aminolevulinic acid

Chl:

Chlorophyll

Chlide:

Chlorophyllide

cyclase:

Mg protoporphyrin monomethylester (oxidative) cyclase

Mg chelatase:

Mg protoporphyrin IX chelatase

MgProto:

Mg protoporphyrin IX

MgProtoME:

Mg protoporphyrin monomethyl ester

Pchlide:

Protochlorophyllide

Proto:

Protoporphyrin IX

ZnChl:

Zn chlorophyll a

ZnChlide:

Zn chlorophyllide a

References

  • Alawady AE, Grimm B (2005) Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. Plant J 41:282–290

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, Gapped BLAST and PSI-BLAST (1997) A new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60:43–73

    Article  CAS  Google Scholar 

  • Bollivar DW, Beale SI (1996) The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase (characterization and partial purification from Chlamydomonas reinhardtii and Synechocystis sp. PCC 6803. Plant Physiol 112:105–114

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Castelfranco PA, Jones OT (1975) Protoheme turnover and chlorophyll synthesis in greening barley tissue. Plant Physiol 55:485–490

    Article  CAS  PubMed  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    Article  CAS  PubMed  Google Scholar 

  • Domanskii V, Rassadina V, Gus-Mayer S, Wanner G, Schoch S, Rüdiger W (2003) Characterization of two phases of chl formation during greening of etiolated barley leaves. Planta 216:475–483

    CAS  PubMed  Google Scholar 

  • Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt U, Grimm B, Hörtensteiner S (2004) Recent advances in chl biosynthesis and breakdown in higher plants. Plant Mol Biol 56:1–14

    Article  CAS  PubMed  Google Scholar 

  • Frigerio S, Campoli C, Zorzan S, Fantoni LI, Crosatti C, Drepper F, Haehnel W, Cattivelli L, Morosinotto T, Bassi R (2007) Photosynthetic antenna size in higher plants is controlled by the plastoquinone redox state at the post-transcriptional rather than transcriptional level. J Biol Chem 282:29457–29469

    Article  CAS  PubMed  Google Scholar 

  • Fuhrhop J-H, Smith KM (1975) Laboratory methods. In: Smith KM (ed) Porphyrins and metalloporphyrins. Elsevier, Amsterdam, pp 757–869

    Google Scholar 

  • Gaubier P, Wu HJ, Laudié M, Delseny M, Grellet F (1995) A chlorophyll synthetase gene from Arabidopsis thaliana. Mol Gen Genet 249:58–64

    Article  CAS  PubMed  Google Scholar 

  • Grimm B, Porra R, Rüdiger W, Scheer H (2005) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, In: Advances in Photosynthesis and Respiration, Vol 25. Springer, Dordrecht, the Netherlands

    Google Scholar 

  • Heddad M, Norén H, Reiser V, Dunaeva M, Andersson B, Adamska I (2006) Differential expression and localization of early light-induced proteins in Arabidopsis. Plant Physiol 142:75–87

    Article  CAS  PubMed  Google Scholar 

  • Hedtke B, Alawady A, Chen S, Börnke F, Grimm B (2007) HEMA RNAi silencing reveals a control mechanism of ALA biosynthesis on Mg chelatase and Fe chelatase. Plant Mol Biol 64:733–742

    Article  CAS  PubMed  Google Scholar 

  • Höfgen R, Willmitzer L (1990) Biochemical and genetic analysis of different patatin isoforms in various organs of potato (Solanum tuberosum). Plant Sci 66:221–230

    Article  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Google Scholar 

  • Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, Havaux M (2003) Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc Natl Acad Sci USA 100:4921–4926

    Article  CAS  PubMed  Google Scholar 

  • Ikegami A, Yoshimura N, Motohashi K, Takahashi S, Romano PG, Hisabori T, Takamiya K, Masuda T (2007) The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J Biol Chem 282:19282–19291

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Eichacker LA, Rüdiger W, Mullet JE (1994) Chlorophyll regulates accumulation of the plastid-encoded chlorophyll proteins P700 and D1 by increasing apoprotein stability. Plant Physiol 104:907–916

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Yamamoto YY, Seki M, Sakurai T, Sato M, Abe T, Yoshida S, Manabe K, Shinozaki K, Matsui M (2003) Identification of Arabidopsis genes regulated by high light-stress using cDNA microarray. Photochem Photobiol 77:226–233

    Article  CAS  PubMed  Google Scholar 

  • Koski VM, Smith JH (1948) The isolation and spectral absorption properties of protochlorophyll from etiolated barley seedlings. J Am Chem Soc 70:3558–3562

    Article  CAS  PubMed  Google Scholar 

  • Kruse E, Mock HP, Grimm B (1995) Reduction of coproporphyrinogen oxidase level by antisence system. EMBO J 14:3712–3720

    CAS  PubMed  Google Scholar 

  • Masuda T, Fujita Y (2008) Regulation and evolution of chl metabolism. Photochem Photobiol Sci 10:1131–1149

    Article  Google Scholar 

  • Matsumoto F, Obayashi T, Sasaki-Sekimoto Y, Ohta H, Takamiya K, Masuda T (2004) Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiol 135:2379–2391

    Article  CAS  PubMed  Google Scholar 

  • Mauzerall D, Granick S (1956) The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem 219:435–446

    CAS  PubMed  Google Scholar 

  • Mock HP, Grimm B (1997) Reduction of uroporphyrin decarboxylase by antisense RNA expression affects activities of other enzymes involved in tetrapyrrole biosynthesis and lead to light-dependent necrosis. Plant Physiol 113:1101–1112

    CAS  PubMed  Google Scholar 

  • Moulin M, Smith AG (2005) Regulation of tetrapyrrole biosynthesis in higher plants. Biochem Soc Trans 33:737–742

    Article  CAS  PubMed  Google Scholar 

  • Papenbrock J, Mock HP, Tanaka R, Kruse E, Grimm B (2000) Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Rüdiger W, Benz J, Guthoff C (1980) Detection and partial characterization of activity of chlorophyll synthetase in etioplast membranes. Eur J Biochem 109:193–200

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Smith AG (1988) Cellular localization of two porphyrin-synthesis enzymes in Pisum sativum (pea) and Arum (cuckoo-pint) species. Biochem J 249:423–428

    CAS  PubMed  Google Scholar 

  • Soll J, Schulz G, Rüdiger W, Benz J (1983) Hydrogenation of geranylgeraniol: two pathway exist in spinach chloroplasts. Plant Physiol 71:849–854

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    Article  CAS  PubMed  Google Scholar 

  • Tzvetkova-Chevolleau T, Franck F, Alawady AE, Dall’Osto L, Carrière F, Bassi R, Grimm B, Nussaume L, Havaux M (2007) The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. Plant J 50:795–809

    Article  CAS  PubMed  Google Scholar 

  • Vandepoele K, Quimbaya M, Casneuf T, De Veylder L, Van de Peer Y (2009) Unraveling transcriptional control in Arabidopsis using cis-regulatory elements and coexpression networks. Plant Physiol 150:535–546

    Article  CAS  PubMed  Google Scholar 

  • Weinstein JD, Beale SI (1984) Biosynthesis of protoheme and heme a precursors solely from glutamate in the unicellular red alga Cyanidium caldarium. Plant Physiol 74:146–151

    Article  CAS  PubMed  Google Scholar 

  • Willows RD (2003) Biosynthesis of chlorophylls from protoporphyrin IX. Nat Prod Rep 20:327–341

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Zhang X, He B, Diao L et al (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide estererification in chlorophyll biosynthesis. Plant Physiol 145:29–40

    Article  CAS  PubMed  Google Scholar 

  • Yaronskaya E, Ziemann V, Walter G, Averina N, Boerner T, Grimm B (2003) Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians. Plant J 35:512–522

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in the DFG-Sonderforschungsbereich (SFB) 492 by grants to B.G. (TP A8/B9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Grimm.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalygo, N., Czarnecki, O., Peter, E. et al. Expression of chlorophyll synthase is also involved in feedback-control of chlorophyll biosynthesis. Plant Mol Biol 71, 425 (2009). https://doi.org/10.1007/s11103-009-9532-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11103-009-9532-8

Keywords

Navigation