Advertisement

Plant Molecular Biology

, Volume 58, Issue 6, pp 887–897 | Cite as

Calmodulin-like Proteins from Arabidopsis and Tomato are Involved in Host Defense Against Pseudomonas syringae pv. tomato

  • David Chiasson
  • Sophia K. Ekengren
  • Gregory B. Martin
  • Stephanie L. Dobney
  • Wayne A. Snedden
Article

Abstract

Complex signal transduction pathways underlie the myriad plant responses to attack by pathogens. Ca2+ is a universal second messenger in eukaryotes that modulates various signal transduction pathways through stimulus-specific changes in its intracellular concentration. Ca2+-binding proteins such as calmodulin (CaM) detect Ca2+ signals and regulate downstream targets as part of a coordinated cellular response to a given stimulus. Here we report the characterization of a tomato gene (APR134) encoding a CaM-related protein that is induced in disease-resistant leaves in response to attack by Pseudomonas syringae pv. tomato. We show that suppression of APR134 gene expression in tomato (Solanum lycopersicum), using virus-induced gene silencing (VIGS), compromises the plant’s immune response. We isolated APR134-like genes from Arabidopsis, termed CML42 and CML43, to investigate whether they serve a functionally similar role. Gene expression analysis revealed that CML43 is rapidly induced in disease-resistant Arabidopsis leaves following inoculation with Pseudomonas syringae pv. tomato. Overexpression of CML43 in Arabidopsis accelerated the hypersensitive response. Recombinant APR134, CML42, and CML43 proteins all bind Ca2+in vitro. Collectively, our data support a role for CML43, and APR134 as important mediators of Ca2+-dependent signals during the plant immune response to bacterial pathogens.

Keywords

Arabidopsis calcium calmodulin plant defense response tomato 

Abbreviations

CaM

calmodulin

CBPs

CaM-binding proteins

CML

CaM-like

VIGS

virus-induced gene silencing

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, G., Reddy, V., Lindgren, P., Jakobek, J., Reddy, A. 2003Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responsesPlant Mol. Biol.51803815CrossRefPubMedGoogle Scholar
  2. Anandalakshmi, R., Marathe, R., Ge, X., Herr, J.M.,Jr., Mau, C., Mallory, A., Pruss, G., Bowman, L., Vance, V.B. 2000A calmodulin-related protein that suppresses posttranscriptional gene silencing in plantsScience290142144CrossRefPubMedGoogle Scholar
  3. Berridge, M.J., Bootman, M.D., Roderick, H.L. 2003Calcium signalling: dynamics, homeostasis and remodellingNat. Rev. Mol. Cell Biol.4517529CrossRefPubMedGoogle Scholar
  4. Blume, B., Nürnberger, T., Nass, N., Scheel, D. 2000Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsleyPlant Cell1214251440CrossRefPubMedPubMedCentralGoogle Scholar
  5. Braam, J., Davis, R.W. 1990Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in ArabidopsisCell60357364CrossRefPubMedGoogle Scholar
  6. Clough, S., Bent, A 1998Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thalianaPlant J.16735743CrossRefPubMedGoogle Scholar
  7. Clough, S.J., Fengler, K.A., Yu, I.C., Lippok, B., Smith, R.K.,Jr., Bent, A.F. 2000The Arabidopsis dnd1 ‘defense, no death’ gene encodes a mutated cyclic nucleotide-gated ion channelProc. Natl. Acad. Sci. USA9793239328CrossRefPubMedGoogle Scholar
  8. Durrant, W., Rowland, O., Piedras, P., Hammond-Kosack, K., Jones, J. 2000cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profilesPlant Cell12963977CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ekengren, S.K., Liu, Y., Schiff, M., Dinesh-Kumar, S.P., Martin, G.B. 2003Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomatoPlant J.36905917CrossRefPubMedGoogle Scholar
  10. Garrigos, M., Deschamps, S., Viel, A., Lund, S., Champeil, P., Moller, J.V., le Maire, M. 1991Detection of Ca2+-binding proteins by electrophoretic migration in the presence of Ca2+ combined with 45Ca2+ overlay of protein blotsAnal. Biochem.1948288CrossRefPubMedGoogle Scholar
  11. Gellatly, K., Lefebvre, D. 1993Identification of a cDNA clone coding for a novel calcium-binding protein from potatoPlant Physiol.10114051406CrossRefPubMedPubMedCentralGoogle Scholar
  12. Grant, M., Brown, I., Adams, S., Knight, M., Ainslie, A., Mansfield, J. 2000The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell deathPlant J.23441450CrossRefPubMedGoogle Scholar
  13. Guo, F.Q., Okamoto, M., Crawford, N.M. 2003Identification of a plant nitric oxide synthase gene involved in hormonal signalingScience302100103CrossRefPubMedGoogle Scholar
  14. Heo, W., Lee, S., Kim, M., Kim, J., Chung, W., Chun, H., Lee, K., Park, C., Park, H., Choi, J., Cho, M.J. 1999Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responsesProc. Natl. Acad. Sci.96766771CrossRefPubMedGoogle Scholar
  15. Jakobek, J.L., Smith-Becker, J.A., Lindgren, P.B. 1999A bean cDNA expressed during a hypersensitive reaction encodes a putative calcium-binding proteinMol. Plant-Microbe Inter.12712719CrossRefGoogle Scholar
  16. Keller, T., Damude, H.G., Werner, D., Doerner, P., Dixon, R.A., Lamb, C. 1998A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifsPlant Cell10255266PubMedPubMedCentralGoogle Scholar
  17. Kim, M., Panstruga, R., Elliott, C., Müller, J., Devoto, A., Yoon, H., Park, H., Cho, M., Schulze-Lefert, P. 2002Calmodulin interacts with MLO protein to regulate defense against mildew in barleyNature416447450CrossRefPubMedGoogle Scholar
  18. King, E., Ward, K., Raney, D. 1954Two simple media for the demonstration of pyocyanin and flurescinJ. Lab. Clin. Med.44301307PubMedGoogle Scholar
  19. Kus, J.V., Zaton, K., Sarkar, R., Cameron, R.K. 2002Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringaePlant Cell14479490CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lamb, C., Ryals, J., Ward, E., Dixon, R. 1992Emerging strategies for enhancing crop resistance to microbial pathogensBiotechnology1014361445PubMedGoogle Scholar
  21. Liu, Y., Schiff, M., Dinesh-Kumar, S. 2002aVirus-induced gene silencing in tomatoPlant J.31777786CrossRefGoogle Scholar
  22. Liu, Y., Schiff, M., Marathe, R., Dinesh-Kumar, S. 2002bTobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virusPlant J30415429CrossRefGoogle Scholar
  23. Ludwig, A.A., Romeis, T., Jones, J.D. 2004CDPK-mediated signalling pathways: specificity and cross-talkJ. Exp. Bot.55181188CrossRefPubMedGoogle Scholar
  24. McCormack, E., Braam, J. 2003Calmodulins and related potential calcium sensors of ArabidopsisNew Phytol.159585598CrossRefGoogle Scholar
  25. Mysore, K., Crasta, O., Tuori, R., Folkerts, O., Swirsky, P., Martin, G.B. 2002Comprehensive transcript profiling of Pto- and Prf- mediated host defense responses to infection by Pseudomonas syringae pv. tomatoPlant J.32299315CrossRefPubMedGoogle Scholar
  26. Nimchuk, Z., Eulgem, T., Holt, B.F.,III, Dangl, J.L. 2003Recognition and response in the plant immune systemAnnu. Rev. Genet.37579609CrossRefPubMedGoogle Scholar
  27. Pedley, K.F., Martin, G.B. 2003Molecular basis of Pto-mediated resistance to bacterial speck disease in tomatoAnnu. Rev. Phytopathol.41215243CrossRefPubMedGoogle Scholar
  28. Reddy, V., Ali, G., Reddy, A. 2002Genes encoding calmodulin-binding proteins in the Arabidopsis genomeJ. Biol. Chem.27798409852CrossRefPubMedGoogle Scholar
  29. Romeis, T., Piedras, P., Zhang, S., Klessig, D.F., Hirt, H., Jones, J.D. 1999Rapid Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responsesPlant Cell11273287PubMedPubMedCentralGoogle Scholar
  30. Ronald, P., Salmeron, J., Carland, F., Staskawicz, B. 1992The cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance geneJ. Bacteriol.17416041611CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sambrook, J., Fritsch, E.F., Maniatis, T. 1989Molecular Cloning: A Laboratory ManualCold Spring Harbour Laboratory PressCold Spring Harbor, NYGoogle Scholar
  32. Sanders, D., Pelloux, J., Brownie, C., Harper, J. 2002Calcium at the crossroads of signalingPlant Cell14S401S417CrossRefPubMedPubMedCentralGoogle Scholar
  33. Snedden, W.A., Fromm, H. 2001Calmodulin as a versatile calcium signal transducer in plantsNew Phytol.1513566CrossRefGoogle Scholar
  34. Talke, I.N., Blaudez, D., Maathuis, F.J., Sanders, D. 2003CNGCs: prime targets of plant cyclic nucleotide signalling?Trends Plant Sci 286–293Google Scholar
  35. Turner, W.L., Waller, J.C., Vanderbeld, B., Snedden, W.A. 2004Cloning and characterization of two NAD kinases from Arabidopsis. Identification of a calmodulin binding isoformPlant Physiol135 12431255CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H., Zhu, B., Zou, G., Katagiri, F. 2003Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringaePlant Cell15317330CrossRefPubMedPubMedCentralGoogle Scholar
  37. Whalen, M., Innes, R., Bent, A., Staskawicz, B. 1991Identification of a Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybeanPlant Cell34959CrossRefPubMedPubMedCentralGoogle Scholar
  38. Xu, H., Heath, M. 1998Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungusPlant Cell10585597CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yamakawa, H., Mitsuhara, I., Ito, N., Seo, S., Kamada, H., Ohashi, Y. 2001Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plantEur. J. Biochem.26839163929CrossRefPubMedGoogle Scholar
  40. Yang, T., Poovaiah, B.W. 2002A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plantsJ Biol. Chem.2774504945058CrossRefPubMedGoogle Scholar
  41. Yang, T., Pooviah, B. 2003Calcium/calmodulin-mediated signal network in plantsTrends Plant Sci.8505512CrossRefPubMedGoogle Scholar
  42. Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P., Durner, J. 2004Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genesProc. Natl. Acad. Sci. USA.1011581115816CrossRefPubMedGoogle Scholar
  43. Zielinski, R.E. 2002Preparation of recombinant plant calmodulin isoformsVogel, H.J. eds. Calcium-Binding␣Protein Protocols, Vol 1Humana PressTotawa, NJ143149CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • David Chiasson
    • 1
  • Sophia K. Ekengren
    • 2
  • Gregory B. Martin
    • 2
    • 3
  • Stephanie L. Dobney
    • 1
  • Wayne A. Snedden
    • 1
  1. 1.Department of BiologyQueen’s UniversityKingstonCanada
  2. 2.Boyce Thompson Institute for Plant ResearchIthacaUSA
  3. 3.Department of Plant PathologyCornell UniversityIthacaUSA

Personalised recommendations