Skip to main content

Community-wide consequences of variation in photoprotective physiology among prairie plants

Abstract

Photoprotective pigments, like those involved in the xanthophyll cycle, help plants avoid oxidative damage caused by excess radiation. This study aims to characterize a spectrum of strategies used to cope with light stress by a diverse group of prairie plants at Cedar Creek Ecosystem Science Reserve (East Bethel, MN). We find that concentrations of photosynthetic and photoprotective pigments are highly correlated with one another and with other physiological traits across species and over time, and tend to be phylogenetically conserved. During a period of water limitation, plots dominated by species with constitutively low pigment concentrations showed a greater decline in mean reflectance and photochemical reflectance index, a reflectance-based indicator of photoprotective physiology, possibly due to alterations in canopy structure. Our findings suggest two contrasting strategies for withstanding light stress: (1) Using photoprotective pigments to dissipate excess energy, and (2) altering canopy structure to minimize absorbance of excess radiation.

Abbreviations

Chl:

total chlorophyll (a + b) concentration

CWM:

community-weighted mean

DPS:

xanthophyll de-epoxidation state

ETR:

electron transport rate

fAPAR:

fraction of absorbed photosynthetically active radiation

Fv/Fm :

maximal quantum yield of PSII photochemistry

LUE:

light-use efficiency

ML:

maximum likelihood

NDVI:

normalized difference vegetation index

NIR:

near-infrared light

NPQ:

nonphotochemical quenching

PC:

principal component

PCA:

principal component analysis

PRI:

photochemical reflectance index

V+A+Z:

xanthophyll pool size

VIS:

visible light

WUEi :

intrinsic water-use efficiency

ρn :

reflectance at wavelength n

ΦPSII :

effective quantum yield of PSII photochemistry

References

  • Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview.–Photosynthetica 51: 163–190, 2013.

    Article  CAS  Google Scholar 

  • Barton C.V.M., North P.R.J.: Remote sensing of canopy light use efficiency using the photochemical reflectance index.–Remote Sens. Environ. 78: 264–273, 2001.

    Article  Google Scholar 

  • Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins.–Planta 170: 489–504, 1987.

    Article  PubMed  Google Scholar 

  • Blomberg S.P., Garland T., Ives A.R.: Testing for phylogenetic signal in comparative data: behavioral traits are more labile.–Evolution 57: 717–745, 2003.

    Article  PubMed  Google Scholar 

  • Cavender-Bares J., Bazzaz F.A.: From leaves to ecosystems: using chlorophyll fluorescence to assess photosynthesis and plant function in ecological studies.–In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 409–428. Springer, Dordrecht 2004.

    Google Scholar 

  • Cavender-Bares J., Gamon J. A., Hobbie S. E. et al.: Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales.–Am. J. Bot. 104: 966–969, 2017.

    Article  Google Scholar 

  • Cavender-Bares J., Meireles J.E., Couture J.J. et al.: Associations of leaf spectra with genetic and phylogenetic variation in oaks: prospects for remote detection of biodiversity.–Remote Sens. 8: 221, 2016.

    Article  Google Scholar 

  • Comstock J.P., Mahall B.E.: Drought and changes in leaf orientation for two California chaparral shrubs: Ceanothus megacarpus and Ceanothus crassifolius.–Oecologia 65: 531–535, 19

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B., Adams W.W. III: The role of xanthophyll cycle carotenoids in the protection of photosynthesis.–Trends Plant Sci. 1: 21–26, 1996.

    Article  Google Scholar 

  • Donoghue M.J.: A phylogenetic perspective on the distribution of plant diversity.–P. Natl. Acad. Sci. USA 105: 11549–11555, 2008.

  • Drummond A.J., Ho S.Y.W., Phillips M.J. et al.: Relaxed phylogenetics and dating with confidence.–PLoS Biol. 4: e88, 2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edwards E.J., Osborne C.P., Strömberg C.A.E. et al.: The origins of C4 grasslands: Integrating evolutionary and ecosystem science.–Science 328: 587–591, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Fargione J., Tilman D.: Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass.–Oecologia 143: 598–606, 2005.

    Article  PubMed  Google Scholar 

  • Gamon J.A., Berry J.A.: Facultative and constitutive pigment effects on the Photochemical Reflectance Index (PRI) in sun and shade conifer needles.–Israel J. Plant. Sci. 60: 85–95, 2012.

    Article  Google Scholar 

  • Gamon J.A., Kitajima K., Mulkey S.S. et al.: Diverse optical and photosynthetic properties in a neotropical dry forest during the dry season: implications for remote estimation of photosynthesis.–Biotropica 37: 547–560, 2005.

    Article  Google Scholar 

  • Gamon J.A., Pearcy R.W.: Leaf movement, stress avoidance and photosynthesis in Vitis californica.–Oecologia 79: 475–481, 19

    Article  PubMed  CAS  Google Scholar 

  • Gamon J.A., Serrano L., Surfus J.S.: The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels.–Oecologia 112: 492–501, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Garbulsky M.F., Peñuelas J., Gamon J. et al.: The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and metaanalysis.–Remote Sens. Environ. 115: 281–297, 2011.

    Article  Google Scholar 

  • Ghannoum O.: C4 photosynthesis and water stress.–Ann. Bot.-London 103: 635–644, 2009.

    Article  CAS  Google Scholar 

  • Gitelson A.A., Gamon J.A.: The need for a common basis for defining light-use efficiency: Implications for productivity estimation.–Remote Sens. Environ. 156: 196–201, 2015.

    Article  Google Scholar 

  • Gitelson A.A., Gamon J.A., Solovchenko A.: Multiple drivers of seasonal change in PRI: Implications for photosynthesis 1. Leaf level.–Remote Sens. Environ. 191: 110–116, 2017a.

    Article  Google Scholar 

  • Gitelson A.A., Gamon J.A., Solovchenko A.: Multiple drivers of seasonal change in PRI: Implications for photosynthesis 2. Stand level.–Remote Sens. Environ. 190: 198–206, 2017b.

    Article  Google Scholar 

  • Giussani L.M., Gillespie L.J., Scataglini M.A. et al.: Breeding system diversification and evolution in American Poa supersect. Homalopoa (Poaceae: Poeae: Poinae).–Ann. Bot.-London 118: 281–303, 2016.

    Article  Google Scholar 

  • Harmon L.J., Weir J.T., Brock C.D. et al.: GEIGER: investigating evolutionary radiations.–Bioinformatics 24: 129–131, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Haxeltine A., Prentice I.C.: A general model for the light-use efficiency of primary production.–Funct. Ecol. 10: 551–561, 1996.

    Article  Google Scholar 

  • Jahns P., Holzwarth A.R.: The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II.–Biochim. Biophys. Acta 1817: 182–193, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Jetz W., Cavender-Bares J., Pavlick R. et al.: Monitoring plant functional diversity from space.–Nat. Plants 2: 16024, 2016.

    Article  PubMed  Google Scholar 

  • Joel G., Gamon J.A., Field C.B.: Production efficiency in sunflower: The role of water and nitrogen stress.–Remote Sens. Environ. 62: 176–188, 1997.

    Article  Google Scholar 

  • Kadioglu A., Terzi R.: A dehydration avoidance mechanism: leaf rolling.–Bot. Rev. 73: 290–302, 2007.

    Article  Google Scholar 

  • Kennedy T.A., Naeem S., Howe K.M. et al.: Biodiversity as a barrier to ecological invasion.–Nature 417: 636–638, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kim K.-J., Choi K.-S., Jansen R.K.: Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae).–Mol. Biol. Evol. 22: 1783–1792, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Lavin M., Herendeen P.S., Wojciechowski M.F.: Evolutionary rates analysis of leguminosae implicates a rapid diversification of lineages during the tertiary.–Syst. Biol. 54: 575–594, 2005.

    Article  PubMed  Google Scholar 

  • Lee J., Durst R.W., Wrolstad R.E.: Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study.–J. AOAC Int. 88: 1269–1278, 2005.

    PubMed  CAS  Google Scholar 

  • McManus K.M., Asner G.P., Martin R.E. et al.: Phylogenetic structure of foliar spectral traits in tropical forest canopies.–Remote Sens. 8: 196, 2016.

    Article  Google Scholar 

  • Miyazawa S.-I., Makino A., Terashima I.: Changes in mesophyll anatomy and sink–source relationships during leaf development in Quercus glauca, an evergreen tree showing delayed leaf greening.–Plant Cell Environ. 26: 745–755, 2003.

    Article  Google Scholar 

  • Montgomery R.A., Goldstein G., Givnish T.J.: Photoprotection of PSII in Hawaiian lobeliads from diverse light environments.–Funct. Plant Biol. 35: 595–605, 2008.

    Article  CAS  Google Scholar 

  • Müller P., Li X.-P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy.–Plant Physiol. 125: 1558–1566, 2001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray J.R., Hackett W.P.: Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L.–Plant Physiol. 97: 343–351, 1991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nar H., Saglam A., Terzi R. et al.: Leaf rolling and photosystem II efficiency in Ctenanthe setosa exposed to drought stress.–Photosynthetica 47: 429–436, 2009.

    Article  CAS  Google Scholar 

  • Ollinger S.V., Richardson A.D., Martin M.E. et al.: Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks.–P. Nat. Acad. Sci. USA 105: 19336–19341, 2008.

    Article  Google Scholar 

  • Paradis E., Claude J., Strimmer K.: APE: Analyses of Phylogenetics and Evolution in R language.–Bioinformatics 20: 289–290, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Pearcy R.W., Muraoka H., Valladares F.: Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model.–New Phytol. 166: 791–800, 2005.

    Article  PubMed  Google Scholar 

  • Pearse W.D., Purvis A.: phyloGenerator: an automated phylogeny generation tool for ecologists.–Methods Ecol. Evol. 4: 692–698, 2013.

    Article  Google Scholar 

  • Peguero-Pina J.J., Morales F., Flexas J. et al.: Photochemistry, remotely sensed physiological reflectance index and deepoxidation state of the xanthophyll cycle in Quercus coccifera under intense drought.–Oecologia 156: 1–11, 2008.

    Article  PubMed  Google Scholar 

  • Peñuelas J., Garbulsky M.F., Filella I.: Photochemical reflectance index (PRI) and remote sensing of plant CO2 uptake.–New Phytol. 191: 596–599, 2011.

    Article  PubMed  Google Scholar 

  • R Core Team.: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2016. https://www.R-project.org/.

    Google Scholar 

  • Ramírez-Valiente J.A., Koehler K., Cavender-Bares J.: Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes).–Tree Physiol. 35: 521–534, 2015.

    Article  PubMed  Google Scholar 

  • Revell L.J.: phytools: an R package for phylogenetic comparative biology (and other things).–Methods Ecol. Evol. 3: 217–223, 2012.

    Article  Google Scholar 

  • Savage J.A., Cavender-Bares J., Verhoeven A.: Willow species (genus: Salix) with contrasting habitat affinities differ in their photoprotective responses to water stress.–Funct. Plant Biol. 36: 300–309, 2009.

    Article  Google Scholar 

  • Schneider C.A., Rasband W.S., Eliceiri K.W.: NIH Image to Image J: 25 years of image analysis.–Nat. Methods 9: 671–675, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen M., Chen J., Zhu X. et al.: Yellow flowers can decrease NDVI and EVI values: evidence from a field experiment in an alpine meadow.–Can. J. Remote Sens. 35: 99–106, 2009.

    Article  Google Scholar 

  • Sims D.A., Gamon J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages.–Remote Sens. Environ. 81: 337–354, 2002.

    Article  Google Scholar 

  • Soudani K., Hmimina G., Dufrêne E. et al.: Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen broadleaf forests.–Remote Sens. Environ. 144: 73–84, 2014.

    Article  Google Scholar 

  • Springer K., Wang R., Gamon J.: Parallel seasonal patterns of photosynthesis, fluorescence, and reflectance indices in boreal trees.–Remote Sens. 9: 691, 2017.

    Article  Google Scholar 

  • Stamatakis A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.–Bioinformatics 22: 2688–2690, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Steyn W.J., Wand S.J.E., Holcroft D.M. et al.: Anthocyanins in vegetative tissues: a proposed unified function in photoprotection.–New Phytol. 155: 349–361, 2002.

    Article  CAS  Google Scholar 

  • Stylinski C., Gamon J., Oechel W.: Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species.–Oecologia 131: 366–374, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Taylor S.H., Ripley B.S., Martin T. et al.: Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought.–Glob. Change Biol. 20: 1992–2003, 2014.

    Article  Google Scholar 

  • Tilman D., Reich P.B., Knops J. et al.: Diversity and productivity in a long-term grassland experiment.–Science 294: 843–845, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Turgut R., Kadioglu A.: The effect of drought, temperature and irradiation on leaf rolling in Ctenanthe setosa.–Biol. Plantarum 41: 629–633, 19

    Article  Google Scholar 

  • Ustin S.L., Gamon J.A. Remote sensing of plant functional types.–New Phytol. 186: 795–816, 2010.

    Article  PubMed  Google Scholar 

  • Valladares F., Pugnaire F.I.: Tradeoffs between irradiance capture and avoidance in semi-arid environments assessed with a crown architecture model.–Ann. Bot.-London 83: 459–469, 1999.

    Article  Google Scholar 

  • Wada M.: Chloroplast movement.–Plant Sci. 210: 177–182, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Wang R., Gamon J.A., Montgomery R.A. et al.: Seasonal variation in the NDVI–species richness relationship in a prairie grassland experiment (Cedar Creek).–Remote Sens. 8: 128, 2016.

    Article  Google Scholar 

  • Webb C.O., Donoghue M.J.: Phylomatic: tree assembly for applied phylogenetics.–Mol. Ecol. Notes 5: 181–183, 2005.

    Article  Google Scholar 

  • Wikström N., Savolainen V., Chase M.W.: Evolution of the angiosperms: calibrating the family tree.–P. Roy. Soc. Lond. B Bio. 268: 2211–2220, 2001.

    Article  Google Scholar 

  • Wong C.Y.S., Gamon J.A.: Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers.–New Phytol. 206: 187–195, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Wujeska A., Bossinger G., Tausz M.: Responses of foliar antioxidative and photoprotective defence systems of trees to drought: a meta-analysis.–Tree Physiol. 33: 1018–1029, 2013.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Kothari or J. Cavender-Bares.

Additional information

Acknowledgements: We would like to thank staff at Cedar Creek Ecosystem Science Reserve, including Kally Worm and Troy Mielke. Funding to support this study was provided by a grant from the National Science Foundation (NSF) and National Aeronautics and Space Administraton (NASA) through the Dimensions of Biodiversity program (DEB-1342872) to J. Cavender-Bares, R. Montgomery, and J. Gamon. Additional support was provided by an NSF Long-Term Ecological Research grant to Cedar Creek (DEB-1234162) and an NSF Graduate Research Fellowship to S. Kothari under Grant No. 00039202. Jon Anderson determined percent cover of species in the field, Austin Pieper assisted with HPLC and pigment extraction, and Anna K. Schweiger and Cathleen Nguyen aided in interpreting the pigment concentrations from HPLC. All members of the Cavender-Bares Lab and Cristy Portales provided useful feedback on the research and manuscript.

This article is published with open access at link.springer.com

Electronic supplementary material

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kothari, S., Cavender-Bares, J., Bitan, K. et al. Community-wide consequences of variation in photoprotective physiology among prairie plants. Photosynthetica 56, 455–467 (2018). https://doi.org/10.1007/s11099-018-0777-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0777-9

Additional key words

  • drought
  • light-use efficiency
  • phenology
  • photoinhibition
  • trait covariance
  • water-use efficiency