Skip to main content

Advertisement

Log in

Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress

  • Original paper
  • Published:
Photosynthetica

Abstract

In order to evaluate the effect of static magnetic field (SMF) on morphological and physiological responses of soybean to water stress, plants were grown under well-watered (WW) and water-stress (WS) conditions. The adverse effects of WS given at different growth stages was found on growth, yield, and various physiological attributes, but WS at the flowering stage severely decreased all of above parameters in soybean. The result indicated that SMF pretreatment to the seeds significantly increased the plant growth attributes, biomass accumulation, and photosynthetic performance under both WW and WS conditions. Chlorophyll a fluorescence transient from SMF-treated plants gave a higher fluorescence yield at J–I–P phase. Photosynthetic pigments, efficiency of PSII, performance index based on absorption of light energy, photosynthesis, and nitrate reductase activity were also higher in plants emerged from SMF-pretreated seeds which resulted in an improved yield of soybean. Thus SMF pretreatment mitigated the adverse effects of water stress in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Car:

carotenoids

Chl:

chlorophyll

DAE:

days after emergence

DM:

dry mass

FS:

flowering stage

PIabs:

performance index based on absorption of light energy

P N :

net photosynthetic rate

PFS:

pod-filling stage

PLS:

pod lengthening

ROS:

reactive oxygen species

SMF:

static magnetic field

UT:

untreated seeds

VS:

vegetative stage

WW:

well watered

WS:

water stress.

References

  • Anand A., Nagarajan S., Verma A. et al.: Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). — Indian J. Biochem. Biophys. 49: 63–70, 2012.

    CAS  PubMed  Google Scholar 

  • Ashraf M.Y., Azmi A.R., Khan A.H., Ala S.A.: Effect of water stress on total phenol, peroxidase activity and chlorophyll contents in wheat (Triticum aestivum L.). — Acta Physiol. Plant. 16: 185–191, 1994.

    CAS  Google Scholar 

  • Baghel L., Kataria S., Guruprasad K. N.: Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. — Bioelectromagnetics 37: 455–470, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Bertolli S. C., Rapchan G. L., Souza G. M.: Photosynthetic limitations caused by different rates of water-deficit induction in Glycine max and Vigna unguiculata. — Photosynthetica 50: 329–336, 2012.

    Article  CAS  Google Scholar 

  • Cánovas F.M., Avila C., Cantón F.R. et al.: Ammonium assimilation and amino acid metabolism in conifers. — J. Exp. Bot. 58: 2307–2318, 2007.

    Article  PubMed  Google Scholar 

  • Catuchi T.A., Vítolo H.F., Bertolli S.S., Souza G.M.: Tolerance to water deficiency between two soybean cultivars: transgenic versus conventional. — Ciênc. Rural 31: 373–378, 2011.

    Article  Google Scholar 

  • Çelik Ö., Büyükuslu N., Atak Ç., Rzakoulieva A.: Effects of magnetic field on activity of superoxide dismutase and catalase in Glycine max (L.) Merr. roots. — Polish J. Environ. Stud. 18: 175–182, 2009.

    Google Scholar 

  • Ceppi M.G., Oukarroum A., Çicek N. et al.: The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. — Physiol. Plantarum 144: 277–288, 2012.

    Article  CAS  Google Scholar 

  • Chen Y.P., Li R., He J.M.: Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings. — Ecotoxicology 20: 760–769, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Christen D., Schönmann S., Jermini M. et al.: Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. — Environ. Exp. Bot. 60: 504–514, 2007.

    Article  CAS  Google Scholar 

  • da Silva J.A., Dobránszki J.: Magnetic fields: how is plant growth and development impacted. — Protoplasma 253: 231–248, 2016.

    Article  PubMed  Google Scholar 

  • Elsheery N.I., Cao K.F.: Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. — Acta Physiol. Plant. 30: 769–777, 2008.

    Article  CAS  Google Scholar 

  • Anand A., Nagarajan S., Verma A. et al.: Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). — Indian J. Biochem. Biophys. 49: 63–70, 2012.

    CAS  PubMed  Google Scholar 

  • Ashraf M.Y., Azmi A.R., Khan A.H., Ala S.A.: Effect of water stress on total phenol, peroxidase activity and chlorophyll contents in wheat (Triticum aestivum L.). — Acta Physiol. Plant. 16: 185–191, 1994.

    CAS  Google Scholar 

  • Baghel L., Kataria S., Guruprasad K. N.: Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. — Bioelectromagnetics 37: 455–470, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Bertolli S. C., Rapchan G. L., Souza G. M.: Photosynthetic limitations caused by different rates of water-deficit induction in Glycine max and Vigna unguiculata. — Photosynthetica 50: 329–336, 2012.

    Article  CAS  Google Scholar 

  • Cánovas F.M., Avila C., Cantón F.R. et al.: Ammonium assimilation and amino acid metabolism in conifers. — J. Exp. Bot. 58: 2307–2318, 2007.

    Article  PubMed  Google Scholar 

  • Catuchi T.A., Vítolo H.F., Bertolli S.S., Souza G.M.: Tolerance to water deficiency between two soybean cultivars: transgenic versus conventional. — Ciênc. Rural 31: 373–378, 2011.

    Article  Google Scholar 

  • Çelik Ö., Büyükuslu N., Atak Ç., Rzakoulieva A.: Effects of magnetic field on activity of superoxide dismutase and catalase in Glycine max (L.) Merr. roots. — Polish J. Environ. Stud. 18: 175–182, 2009.

    Google Scholar 

  • Ceppi M.G., Oukarroum A., Çicek N. et al.: The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. — Physiol. Plantarum 144: 277–288, 2012.

    Article  CAS  Google Scholar 

  • Chen Y.P., Li R., He J.M.: Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings. — Ecotoxicology 20: 760–769, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Christen D., Schönmann S., Jermini M. et al.: Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. — Environ. Exp. Bot. 60: 504–514, 2007.

    Article  CAS  Google Scholar 

  • da Silva J.A., Dobránszki J.: Magnetic fields: how is plant growth and development impacted. — Protoplasma 253: 231–248, 2016.

    Article  PubMed  Google Scholar 

  • Elsheery N.I., Cao K.F.: Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. — Acta Physiol. Plant. 30: 769–777, 2008.

    Article  CAS  Google Scholar 

  • Friedman M., Brandon D.L.: Nutritional and health benefits of soy proteins. — J. Agr. Food Chem. 49: 1069–1086, 2001.

    Article  CAS  Google Scholar 

  • Galland P., Pazur A.: Magnetoreception in plants. — J. Plant Res. 118: 371–389, 2005.

    Article  PubMed  Google Scholar 

  • Garg B.K., Vyas S.P., Kathju S., Lahiri A.N.: Influence of water deficit stress at various growth stages on some enzymes of nitrogen metabolism and yield in cluster bean genotypes. — J. Plant. Physiol. 3: 214–218, 1998.

    CAS  Google Scholar 

  • Gerten D., Rost S.: Development and Climate Change: Climate Change Impacts on Agricultural Water Stress and Impact Mitigation Potential. Pp. 8. Potsdam Institute for Climate Impact Research (PIK), Potsdam 2010.

    Google Scholar 

  • Ghobadi M.E., Nadian H., Bakhshandeh M. et al.: Study of root growth, biological yield and grain yield of wheat genotypes under water logging stress during different growth stages. — Seed Plant Improv. J. 22: 513–527, 2006.

    Google Scholar 

  • Govindjee.: Sixty-three years since Kautsky: Chlorophyll a fluorescence. — Aust. J. Plant Physiol. 22: 131–160, 1995.

    Article  CAS  Google Scholar 

  • Heidarzade A., Esmaeili M., Bahmanyar M., Abbasi R.: Response of soybean (Glycine max) to molybdenum and iron spray under well-watered and water deficit conditions. — J. Exp. Biol. Agr. Sci. 4: 37–46, 2016.

    CAS  Google Scholar 

  • Hiscox J.D., Israelstam G.F.: A method for the extraction of chlorophyll from leaf tissue without maceration. — Can. J. Bot. 57: 1332–1334, 1979.

    Article  CAS  Google Scholar 

  • Javed N., Ashraf M., Akram N., Al-Qurainy F.: Alleviation of adverse effects of drought stress on growth and some potential physiological attributes in maize (Zea mays) by seed electromagnetic treatment. — Photochem. Photobiol. 87: 1354–1362, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Jaworski E.G.: Nitrate reductase assay in intact plant tissue.. — Biochem. Biophys. Res. Co. 43: 1274–1279, 1971.

    Article  CAS  Google Scholar 

  • Jiang C.D., Shi L., Gao H.Y. et al.: Development of photosystems II and I during leaf growth in grapevine seedlings probed by chlorophyll a fluorescence transient and 820 nm transmission in vivo. — Photosynthetica 44: 454–463, 2006.

    Article  CAS  Google Scholar 

  • Kalaji H.M., Govindjee, Bosa K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. — Environ. Exp. Bot. 73: 64–72, 2011.

    Article  CAS  Google Scholar 

  • Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. — Acta Physiol. Plant. 38: 102, 2016.

    Article  Google Scholar 

  • Kataria S., Baghel L., Guruprasad K.N.: Effect of seed pretreatment by magnetic field on the sensitivity of maize seedlings to ambient ultraviolet radiation (280-400 nm). — Int. J. Trop. Agric. 33: 1–7, 2015.

    Google Scholar 

  • Kataria S., Baghel L., Guruprasad K.N.: Alleviation of adverse effects of ambient uv stress on growth and some potential physiological attributes in soybean (Glycine max) by seed pretreatment with static magnetic field.. — J. Plant Growth Regul. DOI: 10.1007/s00344-016-9657-3, 2017.

    Google Scholar 

  • Khan M.S.A., Karim M.A., Haque M.M. et al.: Influence of salt and water stress on growth and yield of soybean genotypes. — Pertanika J. Trop. Agri. Sci. 39: 167–180, 2016.

    Google Scholar 

  • Krawiec A.C.L., Kaufman D.S., Vaillencourt D.A.: Age models and tephrostratigraphy from two lakes on Adak Island, Alaska. — Quat. Geochronol. 18: 41–53, 2013.

    Article  Google Scholar 

  • Lawlor D.W., Cornic G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. — Plant Cell Environ. 25: 275–294, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Lazár D., Murch S.J., Beilby M.J., Al Khazaaly S.: Exogenous melatonin affects photosynthesis in characeae Chara australis. — Plant Signal Behav. 8: e23279, 2013.

    Article  Google Scholar 

  • Lisar S.Y.S., Motafakkerazad R., Hossain M.M., Rahman, I.M.M.: Water stress in plants: causes, effects and responses.. — In: Rahman I.M.M., Hasegawa H. (ed.): Water Stress. Pp. 1- 14. InTech, Rijeka 2012.

    Google Scholar 

  • Liu F.L., Andersen M.N., Jacobsen S.E., Jensen C.R.: Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. — Environ. Exp. Bot. 54: 33–40, 2005.

    Article  CAS  Google Scholar 

  • Liu, F., Andersen M.N., Jensen C.R.: Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean. — Funct. Plant Biol. 30: 271–280, 2003.

    Article  CAS  Google Scholar 

  • Loggini B., Scartazza A., Brugnoli E., Navari-Izzo F.: Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. — Plant Physiol. 119: 1091–1099, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffei M.E.: Magnetic field effects on plant growth, development and evolution. — Front. Plant Sci. 5: 445, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahajan T.S., Pandey O.P.: Magnetic-time model at off season germination. — Int. Agrophys. 28: 57–62, 2014.

    Article  Google Scholar 

  • Makbul S., Saruhan Güler N.S., Durmus N., Güven S.: Changes in anatomical and physiological parameters of soybean under drought stress. — Turk. J. Bot. 35: 369–377, 2011.

    Google Scholar 

  • Manavalan L.P., Guttikonda S.K., Tran L.S.P., Nguyen H.T.: Physiological and molecular approaches to improve drought resistance in soybean. — Plant Cell Physiol. 50: 1260–1276, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Meng L.L., Song J.F., Wen J. et al.: Effects of drought stress on fluorescence characteristics of photosystem II in leaves of Plectranthus scutellarioides. — Photosynthetica 54: 414–421, 2016.

    Article  CAS  Google Scholar 

  • Momeni S.: Effect of seed priming with salicylic acid and polyethylene glycol in combination with salicylic acid spraying plants with drought resistance of maize (Zea mays L.).. — Master Thesis. Seed Science and Technology University of Birjand, Birjand 2010.

    Google Scholar 

  • Nayyar H., Singh S., Kaur, S. et al.: Differential sensitivity of macrocarpa and microcarpa types of chickpea (Cicer arietinum L.) to water stress: association of contrasting stress response with oxidative injury. — J. Integr. Plant Biol. 48: 1318–1329, 2006.

    Article  CAS  Google Scholar 

  • Parry M.A.J., Androlojc J.P., Khan S. et al.: Rubisco activity: efects of water stress. — Ann. Bot.-London 89: 833–839, 2002.

    Article  CAS  Google Scholar 

  • Passioura J.: The drought environment: physical, biological and agricultural perspectives. — J. Exp. Bot. 58: 113–117, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro C., Chaves M.M.: Photosynthesis and drought: can we make metabolic connections from available data? — J. Exp. Bot. 62: 869–882, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan R., Leelapriya T., Kumari B.D.: Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage and biochemical changes under salt stress. — Bioelectromagnetics 33: 670–681, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Ren J., Dai W.R, Xuan Z.Y. et al.: The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species. — Forest Ecol. Manage. 239: 112–119, 2007.

    Article  Google Scholar 

  • Ružič R., Jerman I.: Weak magnetic field decreases heat stress in cress seedlings. — Electromagn. Biol. Med. 21: 69–80, 2002.

    Article  Google Scholar 

  • Saktheeswari N., Subrahmanyam S.: Effects of pulsed magnetic field on histology, biochemistry and magnetotropism of paddy (Oryza sativa). — Bioelectromagn. Biomed. 2: 37–44, 1989.

    Google Scholar 

  • Schansker G., Tóth S.Z., Holzwarth A.R., Garab G.: Chlorophyll a fluorescence: beyond the limits of the QA model. — Photosynth. Res. 120: 43–58, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Sepanlo N., Talebi R., Rokhzadi A., Mohammadi H.: Morphological and physiological behavior in soybean (Glycine max) genotypes to drought stress implemented at pre-and postanthesis stages. — Acta Biol. Szeged. 58: 109–113, 2014.

    Google Scholar 

  • Shan L., Zhang S.Q.: Is possible to save large irrigation water? — The situation and prospect of water-saving agriculture in China. — Chin. J. Nature 28: 71–74, 2006.

    Google Scholar 

  • Shao H.B., Chu L.Y., Jaleel C.A. et al.: Understanding water deficit stress-induced changes in the basic metabolism of higher plants–biotechnologically and sustainably improving agriculture and the eco environment in arid regions of the globe. — Crit. Rev. Biotechnol. 29: 131–151, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Shao H.B., Guo Q.J., Chu L.Y. et al.: Understanding molecular mechanism of higher plant plasticity under abiotic stress. — Colloid Surface B 54: 37–45, 2007.

    Article  CAS  Google Scholar 

  • Shao H.B., Liang Z.S., Shao M.A.: Adaptation of higher plants to environmental stresses and stress signal transduction. — Acta Ecol. Sin. 25: 1871–1882, 2005.

    Google Scholar 

  • Shine M.B., Guruprasad K.N., Anand A.: Enhancement of germination, growth and photosynthesis in soybean by pretreatment of seeds with magnetic field. — Bioelectromagnetics 32: 474–448, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N.: Antioxidant systems and plant response to the environment. — In: Smirnoff V. (ed.): Environment and Plant Metabolism: Flexibility and Acclimation, BIOS Scientific Publishers, Oxford 1995.

    Google Scholar 

  • Strasser R.J., Srivastava A., Govindjee.: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. — Photochem. Photobiol. 61: 32–42, 1995.

    Article  CAS  Google Scholar 

  • Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. — In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445–483, Taylor and Francis Publ., London 2000.

    Google Scholar 

  • Strasser R.J., Tsimilli-Michael M., Srivastava A: Analysis of the fluorescence transient. — In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration Series. Pp. 321–362, Springer Publ., Dordrecht 2004.

    Google Scholar 

  • Thomas S., Anand A., Chinnusamy V. et al.: Magnetopriming circumvents the effect of salinity stress on germination in chickpea seeds. — Acta Physiol. Plant. 35: 3401–3411, 2013.

    Article  CAS  Google Scholar 

  • Vashisth A., Nagarajan S.: Effect on germination and early growth characteristics in sunflower (Helianthus annus) seeds exposed to static magnetic field. — J. Plant Physiol. 167: 149–156, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Vashisth A., Nagarajan S.: Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). — Bioelectromagnetics 29: 571–578, 2008.

    Article  PubMed  Google Scholar 

  • Wallace J.S.: Increasing agricultural water use efficiency to meet future food production. — Agr. Ecosyst. Environ. 82:105–119, 2000.

    Article  Google Scholar 

  • Wellburn A.R., Lichtenthaler H.: Formulae and programme to determine total carotenoids and chlorophyll a and b of leaf extracts in different solvents. — In: Sybesma C. (ed.): Advances in Photosynthesis Research. Pp. 12. Martinus Nijhoff/Dr. W. Junk Publishers, Boston 1984.

  • Xu C., Lv Y., Chen C. et al.: Blue light-dependent phosphorylations of cryptochromes are affected by magnetic fields in Arabidopsis. — Adv. Space Res. 53: 1118–1124, 2014.

    Article  CAS  Google Scholar 

  • Younis M.E., El-Shahaby O.A., Abo-Hame S.A., Ibrahim A.H.: Effects of water stress on growth, pigments and 14CO2 assimilation in three sorghum cultivars. — Agron. Crop Sci. 185: 73–82, 2000.

    Article  Google Scholar 

  • Yu Q., Zhang Y., Liu Y., Shi P.: Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes. — Ann. Bot.-London 93: 435–441, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kataria.

Additional information

Acknowledgements: UGC Rajiv Gandhi National Fellowship (F1-17.1/2013-14/RGNF-2013-14-ST-MAD-53993/ (SAIII/Website) to L. Baghel and Department of Science and Technology, Women Scientists Scheme–A (SR/WOS-A/LS-674/2012-G) to S. Kataria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghel, L., Kataria, S. & Guruprasad, K.N. Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica 56, 718–730 (2018). https://doi.org/10.1007/s11099-017-0722-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0722-3

Additional key words

Navigation