Skip to main content

Advertisement

Log in

Static magnetic field treatment enhanced photosynthetic performance in soybean under supplemental ultraviolet-B radiation

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The study was performed to analyze the impact of seed pretreatment by static magnetic field (SMF) of 200 mT for 1 h on photosynthetic performance of soybean (Glycine max) seedlings under ambient (aUV-B) and supplemental ultraviolet-B (a+sUV-B) stress. Ambient and supplemental UV-B were found to decrease the plant growth, chlorophyll concentration, PSII efficiency, selected JIP-test parameters such as Fv/Fm, φEo, ΔV(IP), PIABS, PItotal, and rate of photosynthesis in the leaves of soybean seedlings emerged from untreated (UT) seeds. aUV-B and a+sUV-B were observed to increase the synthesis of UV-B-absorbing substances (UAS), reactive oxygen species (ROS) like superoxide radical (O2·−) and hydrogen peroxide (H2O2), antioxidants like ascorbic acid and α-tocopherol and decrease the nitrate reductase (NR) activity; subsequently, it results in a decreased rate of photosynthesis, biomass accumulation, and yield. However, our results provided evidence that SMF pretreatment increased the tolerance of soybean seedlings to UV-B radiation by increased NO content and NR activity; higher efficiency of PSII, higher values of φEo, ΔV(IP), PIABS, and PItotal, decreased intercellular CO2 concentration, lower  amount of UAS, ROS, and antioxidants that consequently improve the yield of soybean plants under aUV-B as well as a+sUV-B stress. Thus, our results suggested that SMF pretreatment mitigates the adverse effects of UV-B stress by the enhancement in photosynthetic performance along with higher NO content which may be able to protect the plants from the deleterious effects of oxidative stress caused by UV-B irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ASA:

Ascorbic acid

Chl:

Chlorophyll

F v/F m :

The maximum quantum yield (efficiency) of PS II photochemistry

FW:

Fresh weight

NO:

Nitric oxide

NR:

Nitrate reductase

φEo:

Quantum yield of electron transport

PIABS :

Performance index (potential) for energy conservation from photons absorbed by PSII to the reduction of intersystem electron acceptors

PItotal :

Performance index (potential) for energy conservation from the photons absorbed by PSII to the reduction of photosystem I electron end-acceptors

ROS:

Reactive oxygen species

aUV-B:

Ambient UV-B

a + sUV-B:

Supplemental or enhanced ultraviolet-B

UAS:

UV-B absorbing substances

ΔV (IP):

Relative amplitude of the IP phase of Chla fluorescence

References

  • Ahmad P, Abdel Latef AA, Hashem A, Abd_Allah EF, Gucel S, Tran SP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in Chickpea. Front Plant Sci 7:347. https://doi.org/10.3389/fpls.2016.00347

  • Ahanger MA, Aziz U, Alsahli AA, Alyemeni MN, Ahmad P (2020) Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules 10(1):42. https://doi.org/10.3390/biom10010042

    Article  CAS  Google Scholar 

  • Albert KR, Mikkelsen TN, Ro-Poulsen H (2005) Effects of ambient versus reduced UV-B radiation on high arctic Salix arctica assessed by measurements and calculations of chlorophyll a fluorescence parameters from fluorescence transients. Physiol Plant 124:208–226. https://doi.org/10.1111/j.1399-3054.2005.00502.x

    Article  CAS  Google Scholar 

  • Allen DJ, Nougúes S, Baker NR (1998) Ozone depletion, and increased UV-B radiation: is there a real threat to photosynthesis? J Exp Bot 49:1775–1778. https://doi.org/10.1093/jxb/49.328.1775

    Article  CAS  Google Scholar 

  • An LZ, Liu YH, Zhang MX (2005) Effect of nitric oxide on growth of maize seedling leaves in the presence or absence of ultraviolet-B radiation. J Plant Physiol 162:317–326. https://doi.org/10.1016/j.jplph.2004.07.004

    Article  CAS  PubMed  Google Scholar 

  • Akhter MS, Noreen S, Mahmood S, Athar HR, Ashraf M, Abdullah AA, Ahmad P (2021) Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. J King Saud Univ Sci 33:101239. https://doi.org/10.1016/j.jksus.2020.101239

    Article  Google Scholar 

  • Anand A, Nagarajan S, Verma A, Joshi D, Patha P, Bhardwaj J (2012) pretreatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian J Biochem Biophys 49:63–70

    CAS  PubMed  Google Scholar 

  • Arakawa N, Tsutsumi K, Sanceda NG, Kurata T, Inagaki C (1981) A rapid and sensitive method for determination of ascorbic acid using 4,7-Diphenyl-l, 10-bathophenanthroline. Agric Biol Chem 45:1289–1290

  • Banks JM (2017) Continuous excitation chlorophyll fluorescence parameters: a review for practitioners.Tree Physiol 37:1128–1136. https://doi.org/10.1093/treephys/tpx059

  • Baghel L, Kataria S, Guruprasad KN (2015) Impact of pre-sowing exposure of seeds to stationary magnetic field on nitrogen and carbon metabolism in maize and soybean. Int J Trop Agric 33:977–983

    Google Scholar 

  • Baghel L, Kataria S, Guruprasad KN (2018) Effect of SMF pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica 56:718–730

    CAS  Google Scholar 

  • Bais AF, Bernhard G, McKenzie RL, Aucamp PJ, Young PJ, Ilyas M, Jockel P, Deushi M (2019) Ozone–climate interactions and effects on solar ultraviolet radiation. Photochem Photobiol Sci 18:602–640

    CAS  PubMed  Google Scholar 

  • Balakumar T, Sevakumar V, Sathiameena K, Ilanchezhian CM, Paliwal K (1999) UV-B radiation mediated alterations in the nitrate assimilation pathway of cropplants-1. Kinetic characteristics of nitrate reductase. Photosynthetica 37:459–467

    CAS  Google Scholar 

  • Baroniya SS, Kataria S, Pandey GP, Guruprasad KN (2011) Intraspecific variationin sensitivity to ambient ultraviolet-B radiation in growth and yield characteris-tics of eight soybean cultivars grown under field conditions. Braz J Plant Physiol 23:197–202

  • Baroniya SS, Kataria S, Pandey GP, Guruprasad KN (2013) Intraspecific variations in antioxidant defense responses and sensitivity of soybean varieties to ambient UV radiation. Acta Physiol Plant 35:1521–1530

    CAS  Google Scholar 

  • Baroniya SS, Kataria S, Pandey GP, Guruprasad KN (2014) Growth, photosynthesis and nitrogen metabolism in soybean varieties after exclusion of the UV-B and UV-A/B components of solar radiation. Crop J 2:388–397

    Google Scholar 

  • Basahi JM, Ismail IM, Hassan IA (2014) Effects of enhanced UV-B radiation and drought stress on photosynthetic performance of lettuce (Lactuca sativa L. Romaine) plants. Annu Res Rev Biol 4:1739

    Google Scholar 

  • Bernardini A, Salvatori E, Guerrini V, Fusaro L, Canepari S, Manes F (2015) Effects of high Zn and Pb concentrations on Phragmites australis (Cav.) Trin. Ex. Steudel: photosynthetic performance and metal accumulation capacity under controlled conditions. Int J Phytoremediat 18:16–24. https://doi.org/10.1080/15226514.2015.1058327

    Article  CAS  Google Scholar 

  • Björn LO (2015) Ultraviolet-A, B and C. UV4 Plants Bull 1:17–18

    Google Scholar 

  • Bornman JF, Barnes PW, Robson TM, Robinson SA, Jansen MAK, Ballaré CL, Flint SD (2019) Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem Photobiol Sci 18:681–716. https://doi.org/10.1039/C8PP90061B

    Article  CAS  PubMed  Google Scholar 

  • Bussotti F, Desotgiu R, Cascio C, Pollastrini M, Gravano E, Gerosa G, Marzuoli C, Lorenzini G, Salvatori E, Manes F, Schaub M, Strasser RJ (2011) Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. Environ Exp Bot 73:19–30. https://doi.org/10.1016/j.envexpbot.2010.10.022

    Article  CAS  Google Scholar 

  • Bussotti F, Gerosa G, Digrado A, Po llastrini M (2020) Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. Ecol Indic 108:105686. https://doi.org/10.1016/j.ecolind.2019.105686

  • Caldwell MM, Teramura AH, Tevini M, Bornman JF, Bjorn LO, Kulandaivellu G (1995) Effects of increased solar ultraviolet radiation on terrestrial plants. Ambio 24:166–173

    Google Scholar 

  • Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6:252–266

    CAS  PubMed  Google Scholar 

  • Canovas FM, Avila C, Canton FR, Canas RA, de la Torre F (2007) Ammonium assimilation and amino acid metabolism in conifers. J Exp Bot 58:2307–2318

    CAS  PubMed  Google Scholar 

  • Cascio C, Schaub M, Novak K, Desotgiu R, Bussotti F, Strasser RJ (2010) Foliar responses to ozone of Fagus sylvatica L. seedlings grown in shaded and in full sunlight conditions. Environ Exp Bot 68:188–197. https://doi.org/10.1016/j.envexpbot.2009.10.003

    Article  CAS  Google Scholar 

  • Chaitanya KS, Naithani SC (1994) Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn.f. New Phytol 126:623–627

    CAS  Google Scholar 

  • Chen L, Zhang S (2007) Effects of enhanced ultraviolet-B radiation on water use efficiency, stomatal conductance, leaf nitrogen content, and morphological characteristics of Spiraea pubescens in a warm-temperate deciduous broad-leaved forest. Front For China 2:401. https://doi.org/10.1007/s11461-007-0064-6

    Article  Google Scholar 

  • Chen JJ, Zu YQ, Chen HY, Li Y (2004) Influence of enhanced UV-B radiation on growth and biomass allocation of twenty soybean cultivars. J Agro-Environ Sci 23:29–33

    CAS  Google Scholar 

  • Day TA, Neale PJ (2002) Effects of UV-B radiation on terrestrial and aquatic primary producers. Annu Rev Ecol Syst 33:371–396

    Google Scholar 

  • Dwivedi R, Singh VP, Kumar J, Prasad SM (2015) Differential physiological and biochemical responses of two Vigna species under enhanced UV-B radiation. J Radiat Res Appl Sci 8:173–181

    CAS  Google Scholar 

  • Fatima A, Kataria S, Prajapati R, Jain M, Agrawal AK, Singh B, Kashyap Y, Tripathi DK, Singh VP, Gadre R (2020) Magnetopriming effects on arsenic stress-induced morphological and physiological variations in soybean involving synchrotron imaging. Physiol Plant. https://doi.org/10.1111/ppl.13211

    Article  PubMed  Google Scholar 

  • Ghisi R, Trentin AR, Masi A, Ferretti M (2002) Carbon and nitrogen metabolism in barley plants exposed to UV-B radiation. Physiol Plant 116:200–205

    CAS  PubMed  Google Scholar 

  • Greenberg BM, Wilson MI, Huang XD, Duxbury CL, Gerhaddt KE, Gensemer RW (1997) The effects of ultraviolet- B radiation on higher plants. In: Wang W, Goursuch J, Hughes JS (eds) Plants for environmental studies. CRC Press, Boca Raton, pp 1–35

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva J, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress, antioxidant defenseis a key factor. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop stress and its management, perspectives and strategies. Springer, Rijeka, pp 261–315

    Google Scholar 

  • He J, Huang LK, Chow WS, Whitecross MI, Anderson JM (1994) Responses of rice and pea plants to hardening with low doses of ultraviolet-B radiation. Aust J Plant Physiol 21:563–574

    CAS  Google Scholar 

  • Hiscox J, Israelstam G (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    CAS  Google Scholar 

  • Hopkins L, Bond MA, Tobin AK (2002) Ultraviolet-B radiation reduces the rates of cell division and elongation in the primary leaf of wheat (Triticum aestivum L. cv Maris Huntsman). Plant Cell Environ 25:617–624

    Google Scholar 

  • Hunt R (1982) Plant growth analysis. University Press, Baltimore, USA

  • Inostroza-Blancheteau C, Reyes-Díaz M, Arellano A, Latsague M, Acevedo P, Loyola R, Arce-Johnson P, Alberdi M (2014) Effects of UV-B radiation on anatomical characteristics, phenolic compounds and gene expression of the phenylpropanoid pathway in highbush blueberry leaves. Plant Physiol Biochem 85:85–95

    CAS  PubMed  Google Scholar 

  • Jain K, Kataria S, Guruprasad KN (2004) Oxyradicals under UV-B stress and their quenching by antioxidants. Indian J Exp Biol 42:884–892

    CAS  PubMed  Google Scholar 

  • Jansen AK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135

    Google Scholar 

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissue. Biochem Biophys Res Commun 43:1274–1279

    CAS  PubMed  Google Scholar 

  • Jenkins GI (2009) Signal transduction in response to UV-B radiation. Annu Rev Plant Biol 60:407–431. https://doi.org/10.1146/annurev.arplant.59.032607.092953

    Article  CAS  PubMed  Google Scholar 

  • Jordan BR, He J, Chow WS, Anderson JM (1992) Changes in mRNA levels and polypeptide subunits of ribulose-1,5-bisphosphate carboxylase in response to supplemental UV-B radiation. Plant Cell Environ 15:91–98

    CAS  Google Scholar 

  • Jordan BR, Strid Å, Wargent JJ (2016) What role does UV-B play in determining photosynthesis? In: Pessarakli M (ed) Handbook of photosynthesis. CRC Press, Boca Raton, pp 275–286

    Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ et al (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158. https://doi.org/10.1007/s11120-014-0024-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalaji MH, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska AI, Cetner DM, Lukasik I, Goltsev V, Ladle JR (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102

    Google Scholar 

  • Kalaji HM, Rastogi A, Živčák M et al (2018) Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica 56:953–961. https://doi.org/10.1007/s11099-018-0766-z

    Article  CAS  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Mohammed AR (2003a) Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot 91:817–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Sailaja K (2003b) Field crop responses to ultraviolet-B radiation: a review. Agric For Meteorol 120:191–218. https://doi.org/10.1016/j.agrformet.2003.08.015

    Article  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Goa W (2004) Senescence and hypospectral reflectance of cotton leaves exposed to ultraviolet radiation and carbon dioxide. Physiol Plant 221:250–257

  • Kataria S, Guruprasad KN (2018) Interaction of cytokinins with UV-B (280–315 nm) on the expansion growth of cucumber cotyledons. Hortic Int J 2(2):45–53

    Google Scholar 

  • Kataria S, Jain K, Guruprasad KN (2007) UV-B induced changes in antioxidant enzymes and their isoforms in cucumber (Cucumis sativus L.) .cotyledons. Ind J Biochem Biophys 44:31–37

  • Kataria S, Guruprasad KN, Ahuja S, Singh B (2013) Enhancement of growth, photosynthetic performance and yield by the exclusion of ambient UV components in C3 and C4 plants. Photochem Photobiol B Biol 127:140–152

    CAS  Google Scholar 

  • Kataria S, Jajoo A, Guruprasad KN (2014a) Impact of increasing ultraviolet-B radiation on photosynthetic processes. J Photochem Photobiol B 137:55–66

    CAS  PubMed  Google Scholar 

  • Kataria S, Baroniya S, Baghel L, Kanungo M (2014b) Effect of exclusion of solar UV radiation on plants. Plant Sci Today 1:224–232. https://doi.org/10.14719/pst.2014.1.4.61

    Article  Google Scholar 

  • Kataria S, Baghel L, Guruprasad KN (2017) Alleviation of adverse effects of ambient UV stress on growth and some potential physiological attributes in soybean (Glycine max) by seed pretreatment with static magnetic field. J Plant Growth Regul 36:550–565

    CAS  Google Scholar 

  • Kataria S, Baghel L, Jain M, Guruprasad KN (2019) Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatal Agric Biotechnol 18:101090

    Google Scholar 

  • Kataria S, Rastogi A, Bele A, Jain M (2020) Role of nitric oxide and reactive oxygen species in static magnetic field pretreatment induced tolerance to ambient UV-B stress in soybean. Physiol Mol Biol Plants 26:939–945. https://doi.org/10.1007/s12298-020-00802-5

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020a) Nitrate reductase rather than nitric oxide synthase activity is involved in 24-epibrassinolide-induced nitric oxide synthesis to improve tolerance to iron deficiency in strawberry (Fragaria × annassa) by up-regulating the ascorbate-glutathione cycle. Plant Physiol Biochem 151:486–499

    CAS  PubMed  Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020b) The role of nitrate reductase in brassinosteroid-induced endogenous nitric oxide generation to improve cadmium stress tolerance of pepper plants by up-regulating the ascorbate-glutathione cycle. Ecotoxicol Environ Saf 196:110483. https://doi.org/10.1016/j.ecoenv.2020.110483

    Article  CAS  PubMed  Google Scholar 

  • Krupa SV, Kickert RN (1989) The greenhouse effect: impacts of ultraviolet (UV)-B radiation, carbon dioxide (CO2) and ozone (O3) on vegetation. Environ Pollut 61:263–392

    CAS  PubMed  Google Scholar 

  • Kubiś J, Rybus-Zając M (2008) Drought and excess UV-B irradiation differentially alter the antioxidant system in cucumber leaves. Acta Biol Crac Ser Bot 50:35–41

    Google Scholar 

  • Liu B, Liu X-B, Yan-Sheng L, Herbert SJ (2013) Effects of enhanced UV-B radiation on seed growth characteristicsand yield components in soybean. Field Crop Res 154:158–163

    Google Scholar 

  • Malanga G, Calmanovici G, Puntarulo S (1997) Oxidative damage to chloroplast from Chlorella vulgaris exposed to ultraviolet-B radiation. Physiol Plant 101:455–462

    CAS  Google Scholar 

  • Martinez-Luscher J, Morales F, Delrot S, Sanchez-Diaz M, Gomes E, Aguirreolea J, Pascual I (2013) Short and long-term physiological responses of grapevine leaves to UV-B radiation. Plant Sci 213:114–122

    CAS  PubMed  Google Scholar 

  • Mazza CA, Batista D, Zima AM, Szwarcberg-Bracchitta M, Giordano CV, Acevedo A, Scopel AL, Ballare CL (1999) The effects of solar UV-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses. Plant Cell Environ 22:61–70

    CAS  Google Scholar 

  • Mohammed AR, Tarpley L (2010) Differential response of Southern US rice (Oryza sativa L.) cultivars to Ultraviolet-B radiation. J Agron Crop Sci 196:286–295

    CAS  Google Scholar 

  • Mosadegh H, Trivellini A, Ferrante A, Lucchesini M, Vernieri P, Mensuali A (2018) Applications of UV-B lighting to enhance phenolic accumulation of sweet basil. Sci Hortic 229:107–116

    CAS  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    CAS  Google Scholar 

  • Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57

    Google Scholar 

  • Nikiforou C, Manetas Y (2011) Inherent nitrogen deficiency in Pistacia lentiscus preferentially affects photosystem I: a seasonal field study. Funct Plant Biol 38:848–855

    CAS  PubMed  Google Scholar 

  • Nogues S, Baker NR (1995) Evaluation of the role of damage to photosystem II in the inhibition of CO2 assimilation in pea leaves on exposure to UV-B radiation. Plant Cell Environ 18:781–787

    CAS  Google Scholar 

  • Oukarroum A, Bussotti F, Goltsev V, Kalaji HM (2015) Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Environ Exp Bot 109:80–88. https://doi.org/10.1016/j.envexpbot.2014.08.005

    Article  CAS  Google Scholar 

  • Prajapati R, Kataria S, Jain M (2020) Seed priming for alleviation of heavy metal toxicity in plants: an overview. Plant Sci Today 7:16. https://doi.org/10.14719/pst.2020.7.2.751

    Article  Google Scholar 

  • Pearson CK, Davies RR, Barnes MM (1970) Separation of alphatocotrienol from alpha-tocopherol by polyehtylenecelite column chromatography. Chem Ind 8:275–276

    CAS  PubMed  Google Scholar 

  • Pollastrini M, Desotgiu R, Camin F, Ziller L, Gerosa G, Marzuoli R, Bussotti F (2014) Severe drought events increase the sensitivity to ozone on poplar clone. Environ Exp Bot 100:94–104. https://doi.org/10.1016/j.envexpbot.2013.12.016

    Article  CAS  Google Scholar 

  • Qiang WY, Yang H, Chen T, An LZ, Wang XL (2004) Effect of the combination of cadmium and UV-B radiation on soybean growth. Chin J Appl Ecol 15:697–700

    CAS  Google Scholar 

  • Quaggiotti S, Trentin AR, Dalla Vecchia F, Ghisi R (2004) Response of maize nitrate reductase to UV-B radiation. Plant Sci 167:107–116

    CAS  Google Scholar 

  • Rao MV, Ormrod DP (1995) Impact of UV-B and O3 on the free radical scavenging in Arabidopsis thaliana genotypes differing in flavonoid biosynthesis. Photochem Photobiol 62:719–726

    CAS  Google Scholar 

  • Rastogi A, Pospisil P (2013) Ultra-weak photon emission as a non-invasive tool for the measurement of oxidative stress induced by UVA radiation in Arabidopsis thaliana. J Photochem Photobiol B Biol 123:59–64

    CAS  Google Scholar 

  • Rastogi A, Yadav D, Szymańska R et al (2014) Singlet oxygen scavenging activity of tocopherol and plastochromanol in Arabidopsis thaliana: relevance to photooxidative stress. Plant Cell Environ 37(2):392–401

    CAS  PubMed  Google Scholar 

  • Rastogi A, Stróżecki M, Kalaji HM, Łuców D, Lamentowicz M, Juszczak R (2019a) Impact of warming and reduced precipitation on photosynthetic and remote sensing properties of peatland vegetation. Environ Exp Bot 160:71–80

    CAS  Google Scholar 

  • Rastogi A, Zivcak M, Tripathi DK, Yadav S, Kalaji HM, Brestic M (2019b) Phytotoxic effect of silver nanoparticles in Triticum aestivum: improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 57(1):209–216

    CAS  Google Scholar 

  • Rastogi A, Kovar M, He X, Zivcak M, Kataria S, Kalaji HM, Skalicky M, Ibrahimova UF, Hussain S, Mbarki S, Brestic M (2020) Special issue in honour of Prof. Reto J Strasser—JIP-test as a tool to identify salinity tolerance in sweet sorghum genotypes. Photosynthetica 58:518–528

    CAS  Google Scholar 

  • Reddy KR, Kakanl VG, Zhao D, Kotl S, Gao W (2004) Interactive effects of ultraviolet-B radiation and temperature on cotton physiology, growth, development and hyperspectral reflectance. Photochem Photobiol 79:416–427

    CAS  PubMed  Google Scholar 

  • Redillas MC, Jeong JS, Strasser RJ, Kim YS, Kim JK (2011) JIP analysis on rice (Oryza sativa cv. Nipponbare) grown under limited nitrogen conditions. J Korean Soc Appl Biol Chem 54:827–832

    CAS  Google Scholar 

  • Ripley BS, Redfern SP, Dames JF (2004) Quantification of the photosynthetic performance of phosphorus-deficient Sorghum by means of chlorophyll-a fluorescence kinetics. S Afr J Sci 100:615–618

    CAS  Google Scholar 

  • Robson M, Klema K, Urban O, Jansen M (2015) Re-interpreting plant morphological responses to UV-B radiation. Plant Cell Environ 38:856–866. https://doi.org/10.1111/pce.12374

    Article  CAS  PubMed  Google Scholar 

  • Rockel P (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110. https://doi.org/10.1093/jexbot/53.366.103

    Article  CAS  PubMed  Google Scholar 

  • Ros J, Tevini M (1995) Interaction of UV-radiation and IAA during growth of seedlings and hypocotyls segments of sunflower. J Plant Physiol 146:295–302

    CAS  Google Scholar 

  • Rowland F (2006) Stratospheric ozone depletion. Philos Trans Biol Sci 361(1469):769–790

    CAS  Google Scholar 

  • Rybus-Zając M (2005) Oxidative stress generation in Taxus baccata leaves affected by Pestalotiopsis funerea Desm. under different light conditions. Dendrobiology 54:51–56

    Google Scholar 

  • SakakiT KN, Sugahara K (1983) Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: role of activated oxygen. Physiol Plant 9:28–34

    Google Scholar 

  • Santos VA, Nelson BW, Rodrigues JV, Garcia MN, Ceron VB, Ferreira MJ (2019) Fluorescence parameters among leaf photosynthesis-related traits are the best proxies for CO2 assimilation in Central Amazon trees. Braz J Bot 42:239–247. https://doi.org/10.1007/s40415-019-00533-2

    Article  Google Scholar 

  • Schansker G, Toth SZ, Strasser RJ (2006) Dark-recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim Biophys Acta 1757:787–797

    CAS  PubMed  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica et Biophysica Acta 1706:250–261

    CAS  PubMed  Google Scholar 

  • Searles PS, Flint SD, Caldwell MM (2001) A meta-analysis of plant field studies simulating stratospheric ozone depletion. Oecologia 127:1–10

    PubMed  Google Scholar 

  • Shah T, Latif S, Saeed F, Ali I, Ullah S, Abdullah A, Jan S, Ahmad P (2020) Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2020.10.004

    Article  Google Scholar 

  • Shine MB, Guruprasad KN (2012) Oxyradicals and PS II activity in maize leaves in the absence of UV components of the solar spectrum. J Biosci 37:703–712

    CAS  PubMed  Google Scholar 

  • Shine MB, Guruprasad KN, Anand A (2011) Enhancement of germination, growth, and photosynthesis in soybean by pretreatment of seeds with a magnetic field. Bioelectromagnetics 32:474–484

    CAS  PubMed  Google Scholar 

  • Shine MB, Guruprasad KN, Anand A (2012) Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean. Bioelectromagnetics 33:428–437

    CAS  PubMed  Google Scholar 

  • Singh S, Kumari R, Agrawal M, Agrawal SB (2012) Differential response of radish plants to supplemental ultraviolet-B radiation under varying NPK levels: chlorophyll fluorescence, gas exchange and antioxidants. Physiol Plant 145:474–484. https://doi.org/10.1111/j.1399-3054.2012.01589.x

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Agrawal M, Agrawal SB (2014) Impact of ultraviolet-B radiation on photosynthetic capacity, antioxidative potential and metabolites in Solanum tuberosum L. under varying levels of soil NPK. Acta Physiol Plant 36:1441–1453. https://doi.org/10.1007/s11738-014-1522-z

    Article  CAS  Google Scholar 

  • Snyrychova I, Kos PB, Hideg E (2007) Hydroxyl radicals are not the protagonists of UV-B induced damage in isolated thylakoid membranes. Funct Plant Biol 34:1112–1121

    Google Scholar 

  • Stirbet A, Lazár D, Kromdijk J, Govindjee G (2018) Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 56:86–104. https://doi.org/10.1007/s11099-018-0770-3

    Article  CAS  Google Scholar 

  • Strasser RJ, Tsimilli-Micheal M, Srivastava A (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohnanty P (eds) Probing photosynthesis: mechanisms regulation and adaptation. Taylor and Francis, London, UK, pp 445–483

  • Suchar VA, Robberecht R (2015) Integration and scaling of UV-B radiation effects on plants: from DNA to leaf. Ecol Evol 5:2544–2555

    PubMed  PubMed Central  Google Scholar 

  • Sytar O, Kumari P, Yadav S et al (2019) Phytohormone priming: regulator for heavy metal stress in plants. J Plant Growth Regul 38:739–752. https://doi.org/10.1007/s00344-018-9886-8

    Article  CAS  Google Scholar 

  • Sztatelman O, Grzy J, Gabrys H, Banas AK (2015) The effect of UV-B on Arabidopsis leaves depends on light conditions after treatment. BMC Plant Biol 15:1–16

    Google Scholar 

  • Tiitto R, Nenadis N, Neugart S, Robson M, Agati G, Vepsäläinen J, Zipoli G, Nybakken L, Winkler B, Jansen AKM (2015) Assessing the response of plant flavonoids to UV radiation: an overview of appropriate techniques. Phytochem Rev 14:273–297. https://doi.org/10.1007/s11101-014-9362-4

    Article  CAS  Google Scholar 

  • Thomas S, Anand A, Chinnusamy V, Dahuja A, Basu S (2013) Magnetopriming circumvents the effect of salinity stress on germination in chickpea seeds. Acta Physiol Plant 35:3401–3411. https://doi.org/10.1007/s11738-013-1375-x

    Article  CAS  Google Scholar 

  • Vanhaelewyn L, Prinsen E, Van der Straeten D, Vandenbussche F (2016) Hormone, controlled UV-B responses in plants. J Exp Bot 67(15):4469–4482

    CAS  PubMed  Google Scholar 

  • Wellburn A, Lichtenthaler H (1984) Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In: Advances in photosynthesis research. Springer, pp 9–12

  • Yu GH, Li W, Yuan ZY, Cui HY, Lv CG, Gao ZP, Han B, Gong YZ, Chen GX (2013) The effects of enhanced UV-B radiation on photosynthetic and biochemical activities in super high-yield hybrid rice Liangyoupeijiu at the reproductive stage. Photosynthetica 51:33–44

    CAS  Google Scholar 

  • Zhang WJ, Björn LO (2009) The effect of ultraviolet radiation on the accumulation of medicinal compounds in plants. Fitoterapia 80:207–218. https://doi.org/10.1016/j.fitote.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Dong JF, Jin HH, Sun LN, Xu MJ (2011) Ultraviolet-B-induced flavonoid accumulation in Betula pendula leaves is dependent upon nitrate reductase-mediated nitric oxide signaling. Tree Physiol 31:798–807. https://doi.org/10.1093/treephys/tpr070

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, An L, Feng P, Chen T, Chen K, Liu Y, Tang H, Chang J, Wang X (2003) The cascade mechanisms of nitric oxide as a second messenger of ultraviolet-B ininhibiting mesocotyl elongations. Photochem Photobiol 77:219–225

  • Zhao D, Reddy KR, Kakani VG, Reed J, Sullivan J (2003) Growth and physiological responses of cotton (Gossypium hirsutum L.) to elevated carbon dioxide and ultraviolet-B radiation under controlled environment conditions. Plant Cell Environ 26:771–782

    Google Scholar 

  • Zhou B, Guo Z, Xing J, Huang B (2005) Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J Exp Bot 56:3223–3228

    CAS  PubMed  Google Scholar 

  • Živčák M, Olšovská K, Slamka P et al (2014a) Measurements of chlorophyll fluorescence in different leaf positions may detectnitrogen deficiency in wheat. Zemdirb Agric 101:437–443

    Google Scholar 

  • Živčák M, Olšovská K, Slamka P et al (2014b) Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. Plant Soil Environ 60:210–215

    Google Scholar 

  • Živčák M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI (2015) Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth Res. https://doi.org/10.1007/s11120-015-0121-1

    Article  PubMed  Google Scholar 

  • Zivcak M, Bruckova K, Sytar O, Brestic M, Olsovska K, Allakhverdiev SI (2017) Lettuce flavonoids screening and phenotyping by chlorophyll fluorescence excitation ratio. Planta 245(6):1215–1229. https://doi.org/10.1007/s00425-017-2676-x

    Article  CAS  PubMed  Google Scholar 

  • Zuk-Golaszewska K, Upadhyaya MK, Golaszewski J (2003) The effect of UV-B radiation on plant growth and development. Plant Soil Environ 49:135–140

    Google Scholar 

Download references

Acknowledgements

Financial assistance by Women Scientists Scheme-A (SR/WOS-A/LS-17/2017) of Department and Science Technology, New Delhi to Dr Sunita Kataria is thankfully acknowledged. Special thanks to Dr. Anjana Jajoo, Head School of Biotechnology, D.A.V.V., Indore, India, for proving the facility of handy PEA fluorimeter (Plant Efficiency Analyzer, Hansatech Instruments, Norfolk, England, UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Kataria.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataria, S., Jain, M., Rastogi, A. et al. Static magnetic field treatment enhanced photosynthetic performance in soybean under supplemental ultraviolet-B radiation. Photosynth Res 150, 263–278 (2021). https://doi.org/10.1007/s11120-021-00850-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-021-00850-2

Keywords

Navigation