Skip to main content
Log in

Mesophyll conductance variations in response to diurnal environmental factors in Myrcia paivae and Minquartia guianensis in Central Amazonia

  • Published:
Photosynthetica

Abstract

Mesophyll conductance (g m) is essential to determine accurate physiological parameters used to model photosynthesis in forest ecosystems. This study aimed to determine the effects of time of day on photosynthetic parameters, and to assess the effect of using either intercellular CO2 concentration (C i) or chloroplast CO2 concentration (C c), on maximum carboxylation velocity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), V cmax. We used Amazonian saplings of Myrcia paivae and Minquartia guianensis. Photosynthetic parameters were measured using an infrared gas analyzer (IRGA); g m was determined using both gas exchange and chlorophyll (Chl) a fluorescence and gas-exchange data alone. Leaf thickness (L T) and specific leaf area (SLA) were also measured. Air temperature, relative humidity or understory light did not correlate with g m and on average daily IRGA-fluorometer-determined g m was 0.04 mol(CO2) m−2 s−1 for M. paivae and 0.05 mol(CO2) m−2 s−1 for M. guianensis. Stomatal conductance (g s), g m, electron transport rate (J F), and light-saturated net photosynthetic rate (P Nmax) were lower in the afternoon than in the morning. However, no effect of time of day was observed on V cmax. L T and SLA did not affect any of the examined parameters. IRGA-determined g m was almost the double of the value obtained using the IRGA-fluorescence method. V cmax values determined using C c were about 25% higher than those obtained using C i, which highlighted the importance of using C c in V cmax calculation. Decline in P Nmax at the end of the afternoon reflected variations in g s and g m rather than changes in V cmax. Diurnal variation in g m appeared to be associated more with endogenous than with atmospheric factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

intercellular CO2 concentration

C c :

chloroplast CO2 concentration

Chl:

chlorophyll

[CO2]:

CO2 concentration

Fm :

maximum chlorophyll fluorescence of a dark adapted leaf

Fm′:

maximum fluorescence of an illuminated leaf

Fs :

steady state fluorescence

g m :

mesophyll conductance

g s :

stomatal conductance

I e :

photosynthetically active radiation absorbed by a leaf

J F :

electron transport rate

J F-cal :

J F corrected

J c :

flow of electrons used for carboxylation of RuBP

J o :

flow of electrons used for oxygenation of RuBP

L T :

fresh leaf thickness

K c :

Michaelis constant of Rubisco for carboxylation

K o :

Michaelis constant of Rubisco for oxygenation

PAR:

photosynthetically active radiation

P N :

net photosynthetic rate

P Nmax :

lightsaturated net photosynthetic rate

P N /C i :

response of photosynthesis to intercellular CO2 concentration

PSII:

photosystem II

RH:

air relative humidity

R L :

leaf respiration in the light

Rubisco:

ribulose-1,5-bisphosphate carboxylase

RuBP:

ribulose-1,5-bisphosphate

S*:

specificity factor of Rubisco

S :

Rubisco specificity in vitro (2,560 mol mol−1)

SLA:

specific leaf area

T air :

air temperature

V cmax :

maximum carboxylation velocity of Rubisco

α:

leaf absorptance

ϕPSII :

quantum yield of photosystem II

References

  • Azevedo, G.F.C., Marenco, R.A.: Growth and physiological changes in saplings of Minquartia guianensis and Swietenia macrophylla during acclimation to full sunlight. — Photosynthetica 50: 86–94, 2012.

    Article  CAS  Google Scholar 

  • Camargo, M.A., Marenco, R.A.: Density, size and distribution of stomata in 35 rainforest tree species in Central Amazonia. — Acta Amaz. 41: 205–212, 2011.

    Article  Google Scholar 

  • Carswell, F.E., Meir, P., Wandelli, E.V. et al.: Photosynthetic capacity in a central Amazonian rain forest. — Tree Physiol. 20: 179–186, 2000.

    Article  PubMed  Google Scholar 

  • Cursino, L.M.D., Nunez, C., Paula, R.C. et al.: Triterpenes from Minquartia guianensis (Olacaceae) and in vitro antimalarial activity. — Química Nova 35: 2165–2168, 2012.

    Article  CAS  Google Scholar 

  • Dias, D.P.: [Photosynthesis and diameter increment of trees as a function of temperature and precipitation in a terra-firme rain forest in central Amazonia.] — PhD. Thesis. Forest Science Graduate Program. Instituto Nacional de Pesquisas da Amazônia, Manaus 2009. [In Portuguese]

    Google Scholar 

  • Dodd, A.N., Salathia, N., Hall, A., et al.: Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. — Science 309: 630–633, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Domingues, T.F., Martinelli, L.A., Ehleringer, J.R.: Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia, Brazil. — Plant Ecol. 193: 101–112, 2007.

    Article  Google Scholar 

  • Doughty, C.E., Goulden, M.L., Miller, S.D., Da Rocha, H.R.: Circadian rhythms constrain leaf and canopy gas exchange in an Amazonian Forest. — Geophys. Res. Lett. 33: 1–5, 2006. doi: 10.1029/2006GL026750

    Article  Google Scholar 

  • Epron, D., Godard, D., Cornic, G., Genty, B.: Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). — Plant Cell Environ. 18: 43–51, 1995.

    Article  Google Scholar 

  • Evans, J.R., Loreto, F.: Acquisition and diffusion of CO2 in higher plant leaves. — In: Leegood R.C, Sharkey, TD, von Caemmerer, S (ed.): Photosynthesis: Physiology and Metabolism. Dordrecht: Kluwer Academic Publishers, Pp. 321–351, 2000.

    Google Scholar 

  • Evans, J.R., von Caemmerer, S., Setchell, B.A., Hudson, G.S.: The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. — Aust. J. Plant Physiol. 21: 475–495, 1994.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., von Caemmerer, S., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. — Planta 149: 78–90, 1980.

    Article  CAS  Google Scholar 

  • Flexas, J., Escalona, J.M., Medrano, H.: Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. — Plant Cell Environ. 22: 39–48, 1999.

    Article  Google Scholar 

  • Flexas, J., Diaz-Espejo, A., Galmes, J. et al.: Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. — Plant Cell Environ. 30: 1284–1298, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Flexas, J., Ribas-Carbo, M., Diaz-Espejo, A., Galmes, J., Medrano, H.: Mesophyll conductance to CO2: current knowledge and future prospects. — Plant Cell Environ. 31: 602–621, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Flexas, J., Barbour, M.M., Brendel, O. et al.: Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. — Plant Sci. 193: 70–84, 2012.

    Article  PubMed  Google Scholar 

  • Gaastra, P.: Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. — Meded. Landbouwhogesch. 58: 1–68, 1959.

    Google Scholar 

  • Grassi, G., Ripullone, F., Borghetti, M., Raddi, S., Magnani, F.: Contribution of diffusional and non-diffusional limitations to midday depression of photosynthesis in Arbutus unedo L. — Trees 23: 1149–1161, 2009.

    Article  CAS  Google Scholar 

  • Gilbert, M.E., Pou, A., Zwieniecki, M.A., Holbrook, N.M.: On measuring the response of mesophyll conductance to carbon dioxide with the variable J method. — J. Exp. Bot. 63: 413–425, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Harley, P.C., Loreto, F., Di Marco, G., Sharkey, T.D.: Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. — Plant Physiol. 98: 1429–1436, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Hrstka, M., Urban, O., Petru, E., Babák, L.: Diurnal regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity and its content in Norway spruce needles. — Photosynthetica 45: 334–339, 2007.

    Article  CAS  Google Scholar 

  • Ishida, A., Toma, T., Marjenah.: Limitation of leaf carbon gain by stomatal and photochemical processes in the top canopy of Macaranga conifera, a tropical pioneer tree. — Tree Physiol. 19: 467–473, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, H., Kappen, L.: In situ observation of stomatal movements and gas exchange of Aegopodium podagraria L. in the understorey. — J. Exp. Bot. 51: 1741–1749, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Keenan, T., Sabate, S., Gracia, C.: The importance of mesophyll conductance in regulating forest ecosystem productivity during drought periods. — Glob. Change Biol. 16: 1019–1034, 2010.

    Article  Google Scholar 

  • Kumar, A., Turner, N.C., Singh, D.P. et al.: Diurnal and seasonal patterns of water potential, photosynthesis, evapotranspiration and water use efficiency of clusterbean. — Photosynthetica 37: 601–607, 1999.

    Article  CAS  Google Scholar 

  • Long, S.P., Bernacchi, C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Proceduces and sources of error. — J. Exp. Bot. 54: 2393–2401, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, M., Bousser, A.S., Sissoeff, I., Gaspar, M., Lachaise, B., Hoarau, J., Mahe, A.: Diurnal regulation of water transport and aquaporin gene expression in maize roots: Contribution of PIP2 proteins. — Plant Cell Environ. 44: 1384–1395, 2003.

    Article  CAS  Google Scholar 

  • Magalhães, N.S.: [Growth and diurnal variation in photosynthesis and stomatal conductance in five Amazonian tree species]. — MSc. Dissertation. Botany Graduate Program. Instituto Nacional de Pesquisas da Amazônia, Manaus 2010. [In Portuguese]

    Google Scholar 

  • Magalhães Filho, J.R., Machado, E.C., Machado, D.F.S.P. et al.: [Root temperature variation and photosynthesis of ‘Valencia’ sweet orange nursery]. — Pesqui. Agropecu. Bras. 44: 1118–1126, 2009. [In Portuguese]

    Article  Google Scholar 

  • Manter, D.K., Kerrigan, J.: A/C i curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. — J. Exp. Bot. 55: 2581–2588, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Marles, R.J., Farnsworth, N.R., Neill, D.A.: Isolation of a novel cyto-toxic polyacetylene from a traditional anthelmintic medicinal plant, Minquartia guianensis. — J. Nat. Prod. 52: 261–266, 1989.

    Article  CAS  Google Scholar 

  • Massacci, A., Nabiev, S.M., Pietrosanti, L. et al.: Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. — Plant Physiol. Biochem. 46: 189–195, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  PubMed  CAS  Google Scholar 

  • McClung, C.R.: Circadian rhythms in plants: a millennial view. — Physiol. Plant. 109: 359–371, 2000.

    Article  CAS  Google Scholar 

  • Medrano, H., Escalona, J.M., Bota, J., Gulias, J., Flexas, J.: Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. — Ann. Bot. 89: 895–905, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Medlyn, B.E., Badeck, F.W., De Pury, D.G.G. et al.: Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. — Plant Cell Environ. 22: 1475–1495, 1999.

    Article  CAS  Google Scholar 

  • Mendes, K.R.: [Influence of circadian rhythms on stomatal conductance and photosynthesis in saplings of forest tree species in Central Amazonia]. — PhD. Thesis. Botany Graduate Program. Instituto Nacional de Pesquisas da Amazônia, Manaus 2012. [In Portuguese]

    Google Scholar 

  • Mendes, K.R., Marenco, R.A.: Leaf traits and gas exchange in saplings of native tree species in the Central Amazon. — Sci. Agr. 67: 624–632, 2010.

    Article  Google Scholar 

  • Nebel, G.: Minquartia guianensis Aubl.: use, ecology and management in forestry and agroforestry. — Forest Ecol. Manag. 150: 115–124, 2001.

    Article  Google Scholar 

  • Oliveira, A.A., Mori, S.A.: A central Amazonian terra firme forest. I. High tree species richness on poor soils. — Biodivers. Conserv. 8: 1219–1244, 1999.

    Article  Google Scholar 

  • Park, S.Y, Furukawa, A.: Photosynthetic and stomatal responses of two tropical and two temperate trees to atmospheric humidity. — Photosynthetica 36: 181–186, 1999.

    Article  Google Scholar 

  • Parry, M.A.J., Delgado, E., Vadell, J. et al.: Water stress and the diurnal activity of ribulose-1,5-bisphosphate carboxylase in field Nicotina tabacum genotypes selected for survival at low CO2 concentrations. — Plant Physiol. Biochem. 31: 113–120, 1993.

    CAS  Google Scholar 

  • Pons, T.L., Flexas, J., von Caemmerer, S. et al.: Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. — J. Exp. Bot. 60: 2217–2234, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Sarda, X., Tousch, D., Ferrare, K. et al.: Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells. — Plant J. 12: 1103–1111, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Schultes, R.E., Raffauf, R.F.: Sundry notes on medicinal or toxic plants of northwest Amazon. — Harv. Pap. Bot. 4: 31–42, 1993.

    Google Scholar 

  • Sharkey, T.D., Bernacchi, C.J., Farquhar, G.D., Singsaas, E.L.: Fitting photosynthetic carbon dioxide response curves for C3 leaves. — Plant Cell Environ. 30: 1035–1040, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Simon, E., Meixner, F.X., Ganzeveld, L., Kesselmeier, J.: Coupled carbon-water exchange of the Amazon rain forest, I. Model description, parameterization and sensitivity analysis. Biogeosciences 2: 231–253, 2005.

    Article  CAS  Google Scholar 

  • Steege, H.T., Pitman, N., Sabatier, D., et al.: A spatial model of tree α-diversity and tree density for the Amazon. — Biodivers. Conserv. 12: 2255–2277, 2003.

    Article  Google Scholar 

  • Syvertsen, J.P., Lloyd, J., McConchie, C. et al.: On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. — Plant Cell Environ. 18: 149–157, 1995.

    Article  Google Scholar 

  • Villar, R., Held, A.A., Merino, J.: Comparison of methods to estimate dark respiration in the light in leaves of two woody species. — Plant Physiol. 105: 167–172, 1994.

    PubMed  CAS  Google Scholar 

  • Warren, C.R.: The photosynthetic limitation posed by internal conductance to CO2 movement is increased by nutrient supply. — J. Exp. Bot. 55: 2313–2321, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Warren, C.R.: Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. — J. Exp. Bot. 59: 1475–1487, 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Marenco.

Additional information

Acknowledgements: To the Ministry of Science, Technology and Innovation and the Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM, UA 6203164.12) for financial support. We also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for scholarship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nascimento, H.C.S., Marenco, R.A. Mesophyll conductance variations in response to diurnal environmental factors in Myrcia paivae and Minquartia guianensis in Central Amazonia. Photosynthetica 51, 457–464 (2013). https://doi.org/10.1007/s11099-013-0046-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0046-x

Additional key words

Navigation