Skip to main content
Log in

Transgenic tomato plants overexpressing chloroplastic monodehydroascorbate reductase are resistant to salt- and PEG-induced osmotic stress

  • Published:
Photosynthetica

Abstract

RNA gel hybridization showed that the expression of monodehydroascorbate reductase (MDHAR) in the wild type (WT) tomato was decreased firstly and then increased under salt- and polyethylene glycol (PEG)-induced osmotic stress, and the maximum level was observed after treatment for 12 h. WT, sense transgenic and antisense transgenic tomato plants were used to analyze the antioxidative ability to cope with osmotic stresses. After salt stress, the fresh mass (FM) and height of sense transgenic lines were greater than those of antisense lines and WT plants. Under salt and PEG treatments, sense transgenic plants showed a lower level of hydrogen peroxide (H2O2) and malondialdehyde (MDA), a higher net photosynthetic rate (P N), and the maximal photochemical efficiency of PSII (Fv/Fm) compared with WT and antisense transgenic plants. Moreover, sense lines maintained higher ascorbate peroxidase (APX) activity than WT and antisense plants under salt- and PEG-induced osmotic stress. These results indicate that chloroplastic MDHAR plays an important role in alleviating photoinhibition of PSII by elevating ascorbate (AsA) level under salt- and PEG-induced osmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

AsA:

ascorbate

CAT:

catalase

DHA:

dehydroascorbate

DHAR:

dehydroascorbate reductase

FM:

fresh mass

Fv/Fm :

the maximal photochemical efficiency of PSII

GSH:

glutathione

GR:

glutathione reductase

MDA:

malondialdehyde

MDHA:

monodehydroascorbate radical

MDHAR:

monodehydroascorbate reductase

MS:

Murashige-Skoog agar medium

PEG:

polyethylene glycol

PPFD:

photosynthetic photon flux density

P N :

net photosynthetic rate

PS:

photosystem

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  • Adriano, S., Angelo, C.T., Bartolomeo, D., Cristos, X.: Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids. — Plant Sci. 169: 403–413, 2005.

    Article  Google Scholar 

  • Apel, K., Hirtm, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Asada, K.: The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2 scavenging in plants. — In: Scandalios, J.G. (ed.): Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Pp.715–735. Cold Spring Harbor Laboratory Press, New York 1997.

    Google Scholar 

  • Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 601–639, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Badawi, G.H., Kawano, N., Yamauchi, Y., Shimada, E., Sasaki, R., Kubo, A., Tanaka, K.: Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. — Physiol. Plant. 121: 231–238, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Gallie, D.R.: Dehydroascorbate reductase affects leaf growth, development and function. — Plant Physiol. 142: 775–787, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Conklin, PL., Williams, EH., Last, RL.: Environmental stress sensitivity of an ascorbic acid-deficient Arabidposis mutant. — Proc. Natl. Acad. Sci. USA 93: 9970–9974, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Eltayeb, A.E., Kawano, N., Badawi, G.H., Kaminaka, H., Sanekata, T., Morishima, I., Shibahara, T., Inanaga, S., Tanaka, K.: Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. — Physiol. Plant. 127: 57–65, 2006.

    Article  CAS  Google Scholar 

  • Eltayeb, AE., Kawano, N., Badaw, GH., Kaminaka, H., Sanekata, T., Shibahara, T., Inanaga, S., Tanaka, K.: Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. — Planta 225: 1255–1264, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Foyer, C.H., Descourvierse, P., Kunert, K.J.: Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. — Plant Cell Environ. 17: 507–523, 1994a.

    Article  CAS  Google Scholar 

  • Foyer, C.H., Lelandais, M., Kunert, K.J.: Photooxidative stress in plants. — Physiol. Plant. 92: 696–717, 1994b.

    Article  CAS  Google Scholar 

  • Grantz, A.A., Brummell, D.A., Bennett, A.B.: Ascorbate free radical reductase mRNA levels are induced by wounding. — Plant Physiol. 108: 411–418, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Gratao, P.L., Polle, A., Lea, P.J., Azevedo, R.A.: Making the life of heavy metal stressed plants a little easier. — Funct. Plant Biol. 32: 481–494, 2005.

    Article  CAS  Google Scholar 

  • Gueta-Dahan, Y., Yaniv, Z., Zilinskas, A., Ben-Hayyim, G.: Salt and oxidative stresses: similar and specific responses and their relation to salt tolerance in Citrus. — Planta 203: 460–469, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hossain, M.A., Asada, K.: Inactivation of ascorbate peroxidase in spinach chloroplast on dark addition of hydrogen peroxide: Its protection by ascorbate. — Plant Cell Physiol. 25: 1285–1295, 1984.

    CAS  Google Scholar 

  • Hossain, MA., Nakano, Y., Asada, K.: Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. — Plant Cell Physiol. 25: 385–395, 1984.

    CAS  Google Scholar 

  • Huang, C., He, W., Guo, J., Chang, X., Su, P., Zhang, L.: Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. — J. Exp. Bot. 56: 3041–3049, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Jakob, B., Herber, U.: Photoproduction and detoxification of hydroxyl radicals in chloroplasts and leaves and relation to photoinactivation of photosystems I and II. — Plant Physiol. 37: 629–635, 1996.

    CAS  Google Scholar 

  • Kampfenkel, K., Vanmontagu, M., Inze, D.: Extraction and determination of ascorbate and dehydroascorbate from plant tissue. — Anal. Biochem. 225: 165–167, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kavitha, K., George, S., Venkataraman, G., Parida, A.A.: saltinducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. — Biochimie 92: 1321–1329, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, S.Y., Choi, S.M., Ahn, Y.O., Lee, H.S., Lee, H.B., Park, Y.M., Kwak, S.S.: Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. — J. Plant Physiol. 160: 347–353, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, S.Y., Jeong, Y.J., Lee, H.S., Kim, J.S., Cho, K.Y., Allen, R.D., Kwak, S.S.: Enhanced tolerance of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. — Plant Cell Environ. 25: 873–882, 2002.

    Article  Google Scholar 

  • Li, F., Wu, Q.Y., Sun, Y.L., Wang, L.Y., Yang, X.H., Meng, Q.W.: Overexpression of chloroplastic monodehydro ascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. — Physiol. Plant. 139: 421–434, 2010.

    PubMed  CAS  Google Scholar 

  • Li, X.G., Duan, W., Meng, Q.W., Zou, Q., Zhao, S.J.: The function of chloroplastic NAD(P)H dehydrogenase in tobacco during chilling stress under low irradiance. — Plant Cell Physiol. 45: 103–108, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lim, S., Kim, Y.H., Kim, S.H., Kwon, S.Y., Lee, H.S., Kim, J.S., Cho, K.W., Pack, K.Y., Kwak, S.S.: Enhanced tolerance of transgenic sweet potato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. — Mol. Breed. 19: 227–239, 2007.

    Article  CAS  Google Scholar 

  • Lin, C.C., Kao, C.H.: Effect of NaCl stress on H2O2 metabolism in rice leaves. — Plant Growth Regul. 30: 151–155, 2000.

    Article  CAS  Google Scholar 

  • Lutts, S., Almansouri, M., Kinet, J.M.: Salinity and water stress have contrasting effects on the relationship between growth and cell viability during and after stress exposure in durum wheat callus. — Plant Sci. 167: 9–18, 2004.

    Article  CAS  Google Scholar 

  • Mano, R., Ohno, C., Domae, Y., Asada, K.: Chloroplastic ascorbate peroxidase is the primary target of methylviologeninduced photooxidative stress in spinach leaves: its relevance to monodehydroascorbate radical detected with in vivo ES. — Biochim. Biophys. Acta 1504: 275–287, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Miyake, C., Asada, K.: Ferredoxin-dependent photoreduction of the monodehydroascorbate radicals in spinach thylakoids. — Plant Cell Physiol. 35: 539–549, 1994.

    CAS  Google Scholar 

  • Munné-Bosch, S., Alegre, L.: Interplay between ascorbic acid and lipophilic antioxidant defences in chloroplasts of waterstressed Arabidopsis plants. — FEBS Lett. 524: 145–148, 2005.

    Article  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249–279, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Pagter, M., Bragato, C., Malagoli, M., Brix, H.: Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. — Aquat. Bot. 90: 43–51, 2009.

    Article  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular cloning. A Laboratory Manual. 2nd Ed. — Harbor Laboratory Press, Cold Spring Harbor 1989.

    Google Scholar 

  • Sanmartin, M., Drogoudi, P.A., Lyons, T., Pateraki, I., Barnes, J., Kanellis, A.K.: Overexpression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. — Planta 216: 918–928, 2003.

    PubMed  CAS  Google Scholar 

  • Sano, S., Tao, S., Endo, Y., Inaba, T., Hossain, MA., Miyake, C., Matsuo, M, Aoki, H, Asada, K, Saito, K.: Purification and cDNA cloning of chloroplastic monodehydroascorbate reductase from spinach. — Biosci. Biotechnol. Biochem. 69: 762–772, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Shalata, A., Neumann, P.M.: Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. — J. Exp. Bot. 56: 2207–2211, 2001.

    Google Scholar 

  • Sharma, P., Dubey, R.S.: Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. — Plant Growth Regul. 46: 209–221, 2005.

    Article  CAS  Google Scholar 

  • Slama, I., Ghnaya, T., Hessini, K., Messedi, D., Savoure, A., Abdelly, C.: Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. — Environ. Exp. Bot. 61: 10–17, 2007.

    Article  CAS  Google Scholar 

  • Slama, I., Ghnaya, T., Savoure, A., Abdelly, C.: Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. — C. R. Biol. 331: 442–451, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff, N.: Ascorbic acid: metabolism and functions of a multi-facetted molecule. — Curr. Opin. Plant Biol. 3: 229–235, 2000.

    PubMed  CAS  Google Scholar 

  • Sonoike, K.: Degradation of psaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I: possible involvement of active oxygen species. — Plant Sci. 115: 157–164, 1996.

    Article  CAS  Google Scholar 

  • Suriyan, C., Chalempol, K.: [Proline accumulation, photosynthetic abilities and growth characters of sugarcane (Saccharum officinarum L.) plantlets in response to salt and water-deficit stress.] — Agr. Sci. 8: 51–58, 2009. [In Chin.]

    Google Scholar 

  • Takahashi, S., Murata, N.: How do environmental stresses accelerate photoinhibition? — Trends Plant Sci. 13: 178–182, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Tang, L., Kwon, S.K., Kim, S.H., Kim, J.S., Choi, J.S., Cho, K.Y., Cung, C.K., Kwak, S.S. Lee, H.S.: Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. — Plant Cell Rep. 25: 1380–1386, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Tonon, G., Kevers, C., Faivre-Rampant, O., Graziani, M., Gaspar, T.: Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. — J. Plant Physiol. 161: 701–708, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Ushimaru, T., Nakagawa, T., Fujioka, Y., Daicho, K., Naito, M., Yamauchi, Y., Nonaka, H., Amako, K., Yamawaki, K., Murata, N.: Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. — J. Plant Physiol. 163: 1179–1184, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. — Photosynth. Res. 25: 147–150, 1990.

    Article  Google Scholar 

  • Wang, W., Vinocur, B., Altman, A.: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. — Planta 218: 1–14, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, A., Bhuiyan, N.H., Waditee, R., Tanaka, Y., Esaka, M., Oba, K., Jagendorf, A.T., Takabe, T.: Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. — J. Exp. Bot. 56: 1785–1796, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X.H., Wen, X.G., Gong, H.M., Lu, Q.T., Yang, Z.P., Tang, Y.L., Liang, Z., Lu, C.M.: Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. — Planta 225: 719–733, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, H.S., Lee, H., Lee, I.A., Kim, K.Y., Jo, J.: Molecular cloning of the monodehydroascorbate reductase gene from Brassica campestris and analysis of its mRNA level in response to oxidative stress. — Biochim. Biophys. Acta 1658: 181–186, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. W. Meng.

Additional information

Acknowledgements: This research was supported by the State Key Basic Research and Development Plan of China (2009CB118505), the Natural Science Foundation of China (31071338, 31171474) and Program for Changjiang Scholars and Innovative Research Team in University (Grant IRT0635).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Wu, Q.Y., Duan, M. et al. Transgenic tomato plants overexpressing chloroplastic monodehydroascorbate reductase are resistant to salt- and PEG-induced osmotic stress. Photosynthetica 50, 120–128 (2012). https://doi.org/10.1007/s11099-012-0021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-012-0021-y

Additional key words

Navigation