Skip to main content

Advertisement

Log in

Enhancing the Cellular Production of Extracellular Vesicles for Developing Therapeutic Applications

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) have various advantageous properties, including a small size, high biocompatibility, efficient cargo loading, and precise cell targeting ability, making them promising tools for therapeutic development. EVs have been increasingly explored for applications like drug delivery. However, due to limited cellular secretion rates of EVs, wide-scale clinical applications are not achievable. Therefore, substantial strategies and research efforts have been devoted to increasing cellular secretion rates of EVs. This review describes various studies exploring different methods to increase the cellular production of EVs, including the application of electrical stimulus, pharmacologic agents, electromagnetic waves, sound waves, shear stress, cell starvation, alcohol, pH, heat, and genetic manipulation. These methods have shown success in increasing EV production, but careful consideration must be given as many of these strategies may alter EV properties and functionalities, and the exact mechanisms causing the increase in cellular production of EVs is generally unknown. Additionally, the methods’ effectiveness in increasing EV secretion may diverge with different cell lines and conditions. Further advancements to enhance EV biogenesis secretion for therapeutic development is still a significant need in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fukuta A, Nishikawa A, Kogure K. Low level electricity increases the secretion of extracellular vesicles from cultured cells. Biochem Biophys Rep. 2020. https://doi.org/10.1016/j.bbrep.2019.100713.

  2. Lee JH, Yoon JY, Lee JH, Lee HH, Knowles JC, Kim HW. Emerging biogenesis technologies of extracellular vesicles for tissue regenerative therapeutics. J Tissue Eng. 2021;12. https://doi.org/10.1177/20417314211019015.

  3. Jarai D, Malih S, Eini M, Jafari R, Gholipourmalekabadi M, Sadeghizadeh M, et al. Improvement, scaling-up, and downstream analysis of exosome production. Crit Rev Biotechnol. 2020;40(8):1098–112. https://doi.org/10.1080/07388551.2020.1805406.

    Article  CAS  Google Scholar 

  4. Wang J, Bonacquisti EE, Brown AD, Nguyen J. Boosting the biogenesis and secretion of mesenchymal stem cell-derived exosomes. Cells. 2020;9(660). https://doi.org/10.3390/cells9030660.

  5. Yanez-Mo M, Siljander PRM, Andreu Z, Zavec AB, Borras FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4. https://doi.org/10.3402/jev.v4.27066.

  6. Ludwig N, Yerneni SS, Menshikova EV, Gillespie DG, Jackson EK, Whiteside TL. Simultaneous inhibition of glycolysis and oxidative phosphorylation triggers a multi-fold increase in secretion of exosomes: possible role of 2′,3'-cAMP. Sci Rep. 2020;10. https://doi.org/10.1038/s41598-020-63658-5.

  7. Ambattu LA, Ramesan S, Dekiwadia C, Hanseen E, Li H, Yeo LY. High frequency acoustic cell stimulation promotes exosome generation regulated by a calcium-dependent mechanism. Commun Biol. 2020:3. https://doi.org/10.1038/s42003-020-01277-6.

  8. Luo L, Wu Z, Wang Y, Li H. Regulating the production and biological function of small extracellular vesicles: current strategies, applications and prospects. J Nanobiotechnol. 2021;19. https://doi.org/10.1186/s12951-021-01171-1.

  9. Yang Z, Shi J, Xie J, Wang Y, Sun J, Liu T, et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng. 2020;4. https://doi.org/10.1038/s41551-019-0485-1.

  10. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8:727. https://doi.org/10.3390/cells8070727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol. 2011;22(4):452–7. https://doi.org/10.1016/j.ceb.2011.04.008.

    Article  CAS  Google Scholar 

  12. Campbell CR, Berman AE, Weintraub NL, Tang YL. Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells. Med Hypotheses. 2016;88. https://doi.org/10.1016/j.mehy.2015.12.022.

  13. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(24):5553–65. https://doi.org/10.1242/jcs.128868.

    Article  CAS  PubMed  Google Scholar 

  14. Murphy DE, de Jong OG, Brouwer M, Wood MJ, Lavieu G, Schiffelers RM, et al. Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. Exp Mol Med. 2019;51. https://doi.org/10.1038/s12276-019-0223-5.

  15. Theory C, Witwer K, Aikawa E, Alcaraz M, Anderson J, Andriantsitohaina J, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1). https://doi.org/10.1080/20013078.2018.1535750.

  16. Chen C, Bai X, Ding Y, Lee IS. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res. 2019;23. https://doi.org/10.1186/s40824-019-0176-8.

  17. Wang Y, Melvin R, Bemis LT, Worrell GA, Wang HL. Programmable modulation for extracellular vesicles. bioRxiv. 2019. https://doi.org/10.1101/566448.

  18. Hu M, Hong L, Liu C, Hong S, He S, Zhou M, et al. Electrical stimulation enhances neuronal cell activity mediated by Schwann cell derived exosomes. Sci Rep. 2019;9. https://doi.org/10.1038/s41598-019-41007-5.

  19. James V, Nizamudeen ZA, Lea D, Dottorini T, Holmes TL, Johnson BB, et al. Transcriptomic analysis of cardiomyocyte extracellular vesicles in hypertrophic cardiomyopathy reveals differential snoRNA cargo. Stem Cells Dev. 2021;30(24). https://doi.org/10.1089/scd.2021.0202.

  20. Zhen S, Yanggang Y, Manshu Y, Yan L, Klein JD, Wang XH. Electrically stimulated acupuncture increases renal blood flow through exosome-carried miR-181. Am J Physiol. 2018;315(6). https://doi.org/10.1152/ajprenal.00259.2018.

  21. Cocozza F, Menay F, Tsacalian R, Elisei A, Sampedro P, Soria I, et al. Cyclophosphamide enhances the release of tumor exosomes that elicit a specific immune response in vivo in a murine T-cell lymphoma. Vaccine. 2019;37(12):1565–76. https://doi.org/10.1016/j.vaccine.2019.02.004.

    Article  CAS  PubMed  Google Scholar 

  22. Nair A, Bu J, Rawding PA, Do SC, Li H, Hong S. Cytochalasin B treatment and osmotic pressure enhance the production of extracellular vesicles (EVs) with improved drug loading capacity. Nanomaterials. 2021;12(3). https://doi.org/10.3390/nano12010003.

  23. Wang X, Qiao D, Chen L, Xu M, Chen S, Huang L, et al. Chemotherapeutic drugs stimulate the release and recycling of extracellular vesicles to assist cancer cells in developing an urgent chemoresistance. Mol Cancer. 2019;18. https://doi.org/10.1186/s12943-019-1114-z.

  24. Grisard E, Nevo N, Lescure A, Doll S, Corbe M, Jouve M, et al. Homosalate boosts the release of tumour-derived extracellular vesicles with protection against anchorage-loss property. J Extracll Vesicles. 2022;11(7). https://doi.org/10.1002/jev2.12242.

  25. Emam SE, Ando H, Lila ASA, Kobayashi S, Shimizu T, Okuhira K, et al. Doxorubicin expands in vivo secretion of circulating exosome in mice. Biol Pharm Bull. 2018;41(7):1078–83. https://doi.org/10.1248/bpb.b18-00202.

    Article  CAS  PubMed  Google Scholar 

  26. Keklikoglou I, Cianciaruso C, Esra G, Squadrito L, Spring LM, Tazzyman S, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol. 2018;21:190–202. https://doi.org/10.1038/s41556-018-0256-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu M, Tian X, Song X, Li Y, Tian Y, Zhao Y, et al. Nanoparticle-induced exosomes target antigen-presenting cells to initiate Th1-type immune activation. Small. 2012;8(18):2841–8. https://doi.org/10.1002/smll.201200381.

    Article  CAS  PubMed  Google Scholar 

  28. Park DJ, Yun WS, Kim WC, Park JE, Lee SH, Ha S, et al. Improvement of stem cell-derived exosome release efficiency by surface-modified nanoparticles. J Nanobiotechnol. 2020;18. https://doi.org/10.1186/s12951-020-00739-7.

  29. Reddy VS, Madala SK, Trinath J, Reddy BG. Extracellular small heat shock proteins: exosomal biogenesis and function. Cell Stress Chaperones. 2018;23(3):441–54. https://doi.org/10.1007/s12192-017-0856-z.

    Article  CAS  PubMed  Google Scholar 

  30. Shi C, Alvarez-Olmedo D, Zhang Y, Pattar BSB, O'Brien ER. The heat shock protein 27 immune complex enhances exosomal cholesterol efflux. Biomedicines. 2020;8(8):290. https://doi.org/10.3390/biomedicines8080290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cesselli D, Parisse P, Akelsova A, Veneziano C, Cervellin C, Zanello A, et al. Extracellular vesicles: how drug and pathology interfere with their biogenesis and function. Front Physiol. 2018;9. https://doi.org/10.3389/fphys.2018.01394.

  32. Savina A, Furlan M, Vidal M, Colombo ML. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem. 2003;278(22):20083–90. https://doi.org/10.1074/jbc.M301642200.

    Article  CAS  PubMed  Google Scholar 

  33. Shyong YJ, Chang KC, Lin FH. Calcium phosphate particles stimulate exosome secretion from phagocytes for the enhancement of drug delivery. Colloids Surf B: Biointerfaces. 2018;171:391–7. https://doi.org/10.1016/j.colsurfb.2018.07.037.

    Article  CAS  PubMed  Google Scholar 

  34. Catalano M, O’Driscoll L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles. 2020;9(1). https://doi.org/10.1080/20013078.2019.1703244.

  35. Wysocynski M, Ratajczak MZ. Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer. 2009;125(7):1595–603. https://doi.org/10.1002/ijc.24479.

    Article  CAS  Google Scholar 

  36. Mutschelknaus L, Peters C, Winkler K, Yentrapalli R, Heider T, Atkinson MJ, et al. Exosomes derived from squamous head and neck cancer promote cell survival after ionizing radiation. PLoS ONE. 2016;11(3). https://doi.org/10.1371/journal.pone.0152213.

  37. Kim WS, Choi D, Park JM, Song HY, Seo HS, Lee DE, et al. Comparison of exosomes derived from non- and gamma-irradiated melanoma cancer cells as a potential antigenic and immunogenic source for dendritic cell-based immunotherapeutic vaccine. Vaccines. 2020;8(4):699. https://doi.org/10.3390/vaccines8040699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu X, Harris SL, Levine AJ. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 2006;66(9):4795–801. https://doi.org/10.1158/0008-5472.CAN-05-4579.

    Article  CAS  PubMed  Google Scholar 

  39. Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R, et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 2008;68(19):7864–71. https://doi.org/10.1158/0008-5472.CAN-07-6538.

    Article  CAS  PubMed  Google Scholar 

  40. Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CK, et al. Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Transl Oncol. 2013;6(6):638–48. https://doi.org/10.1593/tlo.13640.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ariyoshi K, Miura T, Kasai K, Fujishima Y, Nakata A, Yoshida M. Radiation-induced bystander effect is mediated by mitochondrial DNA in exosome-like vesicles. Sci Rep. 2019;9(9):103. https://doi.org/10.1038/s41598-019-45669-z.

    Article  CAS  Google Scholar 

  42. AL-Abedi R, Cagatay ST, Mayah A, Brooks SA, Kadhim M. Ionising radiation promotes invasive potential of breast cancer cells: the role of exosomes in the process. Int J Mol Sci. 2021;22:11570. https://doi.org/10.3390/ijms222111570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tortolici F, Vumbaca S, Incocciati B, Dayal R, Aquilano K, Giovanetti A, Rufini S. Ionizing radiation-induced extracellular vesicle release promotes AKT-associated survival response in SH-SY5Y neuroblastoma cells. Cells. 2021;10(1):107. https://doi.org/10.3390/cells10010107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jabbari N, Nawaz M, Rezaie J. Ionizing radiation increases the activity of exosomal secretory pathway in MCF-7 human breast cancer cells: a possible way to communicate resistance against radiotherapy. Int J Mol Sci. 2019;20(15):3649. https://doi.org/10.3390/ijms20153649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jelonek K, Widłak P, Pietrowska M. The influence of ionizing radiation on exosome composition, secretion and intercellular communication. Protein Pept Lett. 2016;23(7):656–63. https://doi.org/10.2174/0929866523666160427105138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen Z, Sun J, Shao J, Xu J. Ultraviolet B irradiation enhances the secretion of exosomes by human primary melanocytes and changes their exosomal miRNA profile. PLoS ONE. 2020;15(8). https://doi.org/10.1371/journal.pone.0237023.

  47. Wang J, Pothana K, Chen S, Sawant H, Travers JB, Bihl J, et al. Ultraviolet B irradiation alters the level and miR contents of exosomes released by keratinocytes in diabetic condition. Photochem Photobiol. 2021. https://doi.org/10.1111/php.13583.

  48. Ruan S, Erwin N, He M. Light-induced high-efficient cellular production of immune functional extracellular vesicles. J Extracell Vesicles. 2022;11(3). https://doi.org/10.1002/jev2.12194.

  49. Ni N, Ma W, Yangling T, Liu J, Hua H, Cheng J, et al. Exosomal MiR-769-5p exacerbates ultraviolet-induced bystander effect by targeting TGFBR1. Front Physiol. 2020. https://doi.org/10.3389/fphys.2020.60308.

  50. Wang J, Ma W, Si C, Zhang M, Qian W, Park G, et al. Exosome-mediated miR-4655-3p contributes to UV radiation-induced bystander effects. Exp Cell Res. 2022. https://doi.org/10.1016/j.yexcr.2022.113247.

  51. Le M, Fernandez-Palomo C, McNeill FE, Seymour CE, Rainbow AJ, Mothersill CE. Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: Reconciling the mechanisms mediating the bystander effect. PLoS ONE. 2017;12(3). https://doi.org/10.1371/journal.pone.0173685.

  52. Aubertin K, Silva AKA, Luciani N, Espinosa A, Djemat A, Charue D, et al. Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy. Sci Rep. 2016;6. https://doi.org/10.1038/srep35376.

  53. Yang K, Li D, Wang M, Xu Z, Chen X, Liu Q, et al. Exposure to blue light stimulates the proangiogenic capability of exosomes derived from human umbilical cord mesenchymal stem cells. Stem Cell Res Ther. 2019;10. https://doi.org/10.1186/s13287-019-1472-x.

  54. Yingxue WZM, Zhang Y, Yang J, He G, Chen S. Photo-oxidative blue-light stimulation in retinal pigment epithelium cells promotes exosome secretion and increases the activity of the NLRP3 Inflammasome. Curr Eye Res. 2019;44(1):67–75. https://doi.org/10.1080/02713683.2018.1518458.

    Article  CAS  Google Scholar 

  55. Weihrauch D, Keszler A, Lindemer B, Krolikowski J, Lohr NL. Red light stimulates vasodilation through extracellular vesicle trafficking. J Photochem Photobiol B. 2021. https://doi.org/10.1016/j.jphotobiol.2021.112212.

  56. Bagheri HS, Mousavi M, Rezabakhsh A, Rezaie J, Rasta SH, Nourazarian A, et al. Low-level laser irradiation at a high power intensity increased human endothelial cell exosome secretion via Wnt signaling. Lasers Med Sci. 2018;33:1131–45. https://doi.org/10.1007/s10103-018-2495-8.

    Article  PubMed  Google Scholar 

  57. Zhu CT, Li T, Hu YH, Zou M, Guo Q, Qu XW. Exosomes secreted by mice adipose-derived stem cells after low-level laser irradiation treatment reduce apoptosis of osteocyte induced by hypoxia. Eur Rev Med Pharmacol Sci. 2017;21. https://doi.org/10.26355/eurrev_201712_13993.

  58. Habibi R, He V, Ghavamian S, de Marco A, Lee TH, Aguilar MI, et al. Exosome trapping and enrichment using a sound wave activated nano-sieve (SWANS). Lab Chip. 2020;19. https://doi.org/10.1039/D0LC00623H.

  59. Gu Y, Chen C, Mao Z, Bachman H, Becker R, Rufo J, et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci Adv. 2021;7. https://doi.org/10.1126/sciadv.abc0467.

  60. Broman A, Lenshof A, Evander M, Happonen L, Ku A, Malmström J, et al. Multinodal acoustic trapping enables high capacity and high throughput enrichment of extracellular vesicles and microparticles in miRNA and MS proteomics studies. Anal Chem. 2021;93(8):3929–37. https://doi.org/10.1021/acs.analchem.0c04772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Maeshige N, Langston P, Yuan Z, Kondo H, Fujino H. High-intensity ultrasound irradiation promotes the release of extracellular vesicles from C2C12 myotubes. Ultrasonics. 2021. https://doi.org/10.1016/j.ultras.2020.106243.

  62. Zhao Z, Qu L, Shuang T, Wu S, Su Y, Lu F, et al. Low-intensity ultrasound radiation increases exosome yield for efficient drug delivery. J Drug Deliv Sci Technol. 2020;57(6). https://doi.org/10.1016/j.jddst.2020.101713.

  63. Deng Z, Wang J, Xiao Y, Li F, Niu L, Liu X, et al. Ultrasound-mediated augmented exosome release from astrocytes alleviates amyloid-β-induced neurotoxicity. Theranostics. 2021;11(9):4351–62. https://doi.org/10.7150/thno.52436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yuana Y, Jiang L, Lammertink BHA, Vader P, Deckers R, Bos C, et al. Microbubbles-assisted ultrasound triggers the release of extracellular vesicles. Int J Mol Sci. 2017;18(8). https://doi.org/10.3390/ijms18081610.

  65. Jiang J, Woulfe DS, Papoutsakis ET. Shear enhances thrombopoiesis and formation of microparticles that induce megakaryocytic differentiation of stem cells. Blood. 2014;124(13):2094–103. https://doi.org/10.1182/blood-2014-01-547927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Takafuji Y, Tatsumi K, Kawao N, Okada K, Muratani M, Kaji H. Effects of fluid flow shear stress to mouse muscle cells on the bone actions of muscle cell-derived extracellular vesicles. PLoS ONE. 2021. https://doi.org/10.1371/journal.pone.0250741.

  67. Feng T, Fang F, Zhang C, Li T, He J, Shen Y, et al. Fluid shear stress-induced exosomes from liver cancer cells promote activation of cancer-associated fibroblasts via IGF2-PI3K Axis. Front Biosci. 2022;27(3):104. https://doi.org/10.31083/j.fbl2703104.

    Article  CAS  Google Scholar 

  68. Chung J, Kim KH, Yu N, An SH, Lee S, Kwon K. Fluid shear stress regulates the landscape of microRNAs in endothelial cell-derived small extracellular vesicles and modulates the function of endothelial cells. Int J Mol Sci. 2022;23(3):1314. https://doi.org/10.3390/ijms23031314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vion AC, Ramkhelawon B, Loyer X, Chironi G, Devue C, Loirand G, et al. Shear stress regulates endothelial microparticle release. Circ Res. 2013;112(10). https://doi.org/10.1161/CIRCRESAHA.112.300818.

  70. Grangier A, Wilhelm C, Gazeau F, Silva A. High yield and scalable EV production from suspension cells triggered by turbulence in a bioreactor. Cytotherapy. 2020;22(5). https://doi.org/10.1016/j.jcyt.2020.03.061.

  71. Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z. Induction of heat shock proteins in B-cell exosomes. J Cell Sci. 2005;118(16):3631–8. https://doi.org/10.1242/jcs.02494.

    Article  CAS  PubMed  Google Scholar 

  72. Otsuka K, Yamamoto Y, Ochiya T. Uncovering temperature-dependent extracellular vesicle secretion in breast cancer. J Extracell Vesicles. 2020;10(2). https://doi.org/10.1002/jev2.12049.

  73. Yousry MM, Omar AI. Therapeutic influence of exosomes derived from non-heat versus heat shocked stem cells on experimentally induced myocardial infarction in adult male Albino rats. Egypt J Histol. 2021;44(1):113–27. https://doi.org/10.21608/ejh.2020.28359.1279.

    Article  Google Scholar 

  74. Bewicke-Copley F, Mulcahy LA, Jacobs LA, Samuel P, Akbar N, Pink RC, Carter DRF. Extracellular vesicles released following heat stress induce bystander effect in unstressed populations. J Extracell Vesicles. 2017;6(1). https://doi.org/10.1080/20013078.2017.134074.

  75. Sharma S, Bigham G, Saha P, Mishra R, Draggulin-Otto S, Zachary-Brohawn Z, Korutla L, et al. Abstract 21075: heat shock factor 1 modulates exosomes biogenesis and cargo. Cell Biol. 2017;136. https://doi.org/10.1161/circ.136.suppl_1.21075.

  76. Lauwers E, Wang YC, Gallardo R, Van der Kant R, Michiels E, Swerts J, et al. Hsp90 mediates membrane deformation and exosome release. Mol Cell. 2018;71:689–702. https://doi.org/10.1016/j.molcel.2018.07.016.

    Article  CAS  PubMed  Google Scholar 

  77. Garcia NA, Ontoria-Oviedo I, González-King H, Diez-Juan A, Sepúlveda P. Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. PLoS One. 2015. https://doi.org/10.1371/journal.pone.0138849.

  78. Ren R, Sun H, Ma C, Liu J, Wang H. Colon cancer cells secrete exosomes to promote self-proliferation by shortening mitosis duration and activation of STAT3 in a hypoxic environment. Cell Biosci. 2019;9(62). https://doi.org/10.1186/s13578-019-0325-8.

  79. King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12. https://doi.org/10.1186/1471-2407-12-421.

  80. Jiang H, Zhao H, Zhang M, He Y, Li X, Xu Y, et al. Hypoxia induced changes of exosome cargo and subsequent biological effects. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.824188.

  81. Anselmo A, Frank D, Papa L, Anselmi CV, Pasquale ED, Mazzola M, et al. Myocardial hypoxic stress mediates functional cardiac extracellular vesicle release. Eur Heart J. 2021;42(28):2780–92. https://doi.org/10.1093/eurheartj/ehab247.

    Article  CAS  PubMed  Google Scholar 

  82. Liang Y, Wu JH, Zhu JH, Yang H. Exosomes secreted by hypoxia–pre-conditioned adipose-derived mesenchymal stem cells reduce neuronal apoptosis in rats with spinal cord injury. J Neurotrauma. 2022;39(9–10):701–14. https://doi.org/10.1089/neu.2021.0290.

    Article  PubMed  Google Scholar 

  83. Bister N, Pistono C, Huremajic B, Jolkkonen J, Giugno R, Malm T. Hypoxia and extracellular vesicles: A review on methods, vesicular cargo and functions. J Extracell Vesicles. 2020;10(1). https://doi.org/10.1002/jev2.12002.

  84. Xu Y, Tian Y, Wang Y, Xu L, Song G, Wu Q, et al. Exosomes derived from astrocytes after oxygen-glucose deprivation promote differentiation and migration of oligodendrocyte precursor cells in vitro. Mol Biol Rep. 2021;48(7):5473–84. https://doi.org/10.1007/s11033-021-06557-w.

    Article  CAS  PubMed  Google Scholar 

  85. Chiang CS, Fu SJ, Hsu CL, Jeng CJ, Tang CY, Huang YS, et al. Neuronal exosomes secreted under oxygen–glucose deprivation/reperfusion presenting differentially expressed miRNAs and affecting neuronal survival and neurite outgrowth. NeuroMolecular Med. 2021;23:404–15. https://doi.org/10.1007/s12017-020-08641-z.

    Article  CAS  PubMed  Google Scholar 

  86. L. Sun, -H-xiang Wang, X-jian Zhu, P-hui Wu, W-qun Chen, P. Zhu, Q-bai Li, and Z-chao Chen. Serum deprivation elevates the levels of microvesicles with different size distributions and selectively enriched proteins in human myeloma cells in vitro. Acta Pharmacol Sin. 2013. (35):381–393. doi: https://doi.org/10.1038/aps.2013.166.

  87. Haraszti RA, Miller R, Dubuke ML, Rockwell HE, Coles AH, Sapp E, et al. Serum deprivation of mesenchymal stem cells improves exosome activity and alters lipid and protein composition. iScience. 2019;16:230–41. https://doi.org/10.1016/j.isci.2019.05.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Momen-Heravi F, Saha B, Kodys K, Catalano D, Satishchandran A, Szabo G. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J Transl Med. 2015;13. https://doi.org/10.1186/s12967-015-0623-9.

  89. Jones LB, Kumar S, Curry AJ, Price JS, Krendelchtchikov A, Crenshaw BJ, et al. Alcohol exposure impacts the composition of HeLa-derived extracellular vesicles. Biomedicines. 2019;7(4). https://doi.org/10.3390/biomedicines7040078.

  90. Mukherjee S, Cabrera MA, Boyadjieva NI, Berger G, Rousseau B, Sarkar DK. Alcohol increases exosome release from microglia to promote complement C1q-induced cellular death of proopiomelanocortin neurons in the hypothalamus in a rat model of fetal alcohol spectrum disorders. J Neurosci. 2020;40(41):7965–79. https://doi.org/10.1523/JNEUROSCI.0284-20.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bala S, Babuta M, Catalano D, Saiju A, Szabo G. Alcohol promotes exosome biogenesis and release via modulating Rabs and miR-192 expression in human hepatocytes. Front Cell Dev Biol. 2022;14. https://doi.org/10.3389/fcell.2021.787356.

  92. Momen-Heravi F, Bala S, Kodys K, Szabo G. Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Sci Rep. 2015;5. https://doi.org/10.1038/srep09991.

  93. Crenshaw BJ, Kumar S, Bell CR, Jones LB, Williams SD, Saldanha SN, et al. Alcohol modulates the biogenesis and composition of microglia-derived exosomes. Biology (Basel). 2019;8(2). https://doi.org/10.3390/biology8020025.

  94. Logozzi M, Angelini DF, Iessi E, Mizzoni D, Di Raimo R, Federici C, et al. Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients. Cancer Lett. 2017;403:318–29. https://doi.org/10.1016/j.canlet.2017.06.036.

    Article  CAS  PubMed  Google Scholar 

  95. Logozzi M, Mizzoni D, Angelini DF, Di Raimo R, Falchi M, Battistini L, et al. Microenvironmental pH and exosome levels interplay in human cancer cell lines of different histotypes. Cancers (Basel). 2018;10(10). https://doi.org/10.3390/cancers10100370.

  96. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284(49):34211–22. https://doi.org/10.1074/jbc.M109.041152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ban JJ, Lee M, Im W, Kim M. Low pH increases the yield of exosome isolation. Biochem Biophys Res Commun. 2015;461(1):76–9. https://doi.org/10.1016/j.bbrc.2015.03.172.

    Article  CAS  PubMed  Google Scholar 

  98. Nakase I, Ueno N, Matsuzawa M, Noguchi K, Hirano M, Omura M, et al. Environmental pH stress influences cellular secretion and uptake of extracellular vesicles. FEBS Open Bio. 2021;11:753–67. https://doi.org/10.1002/2211-5463.13107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Iavorovschi AM, Wang A. Engineering mesenchymal stromal/stem cell-derived extracellular vesicles with improved targeting and therapeutic efficiency for the treatment of central nervous system disorders. Neural Regen Res. 2020;15(12):2235–6. https://doi.org/10.4103/1673-5374.284982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016;214(2):197–213. https://doi.org/10.1083/jcb.201601025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hessvik NP, Overbye A, Brech A, Torgersen ML, Jakobsen IS, Sandvig K, et al. PIKfyve inhibition increases exosome release and induces secretory autophagy. Cell Mol Life Sci. 2016;73:4717–37. https://doi.org/10.1007/s00018-016-2309-8.

    Article  CAS  PubMed  Google Scholar 

  102. Kojima R, Bojar D, Rizzi G, Hamri GCE, El-Baba MD, Saxena P, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat Commun. 2018;9. https://doi.org/10.1038/s41467-018-03733-8.

  103. Shrivastava S, Ray RM, Holguin L, Echavarria L, Grepo N, Scott TA, et al. Exosome-mediated stable epigenetic repression of HIV-1. Nat Commun. 2021;12. https://doi.org/10.1038/s41467-021-25839-2.

  104. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30. https://doi.org/10.1038/ncb2000.

    Article  CAS  PubMed  Google Scholar 

  105. Abrami L, Brandi L, Moayeri M, Brown MJ, Krantz BA, Leppla SH, et al. Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Rep. 2013;5(4). https://doi.org/10.1016/j.celrep.2013.10.019.

  106. Hyenne V, Apaydin A, Rodriguez D, Spiegelhalter C, Hoff-Yoessle S, Diem M, et al. RAL-1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol. 2015;211(1):27–37. https://doi.org/10.1083/jcb.201504136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang C, Xiao X, Chen M, Aldharee H, Chen Y, Long W. Liver kinase B1 restoration promotes exosome secretion and motility of lung cancer cells. Oncol Rep. 2018;39(1):376–82. https://doi.org/10.3892/or.2017.6085.

    Article  CAS  PubMed  Google Scholar 

  108. Jia X, Yin Y, Chen Y, Mao L. The role of viral proteins in the regulation of exosomes biogenesis. Front Cell Infect Microbiol. 2021. https://doi.org/10.3389/fcimb.2021.67162.

  109. Li F, Wu J, Li D, Hao L, Li Y, Yi D, et al. Engineering stem cells to produce exosomes with enhanced bone regeneration effects: an alternative strategy for gene therapy. J Nanobiotechnol. 2022;20. https://doi.org/10.1186/s12951-022-01347-3.

  110. Lener T, Gimona M, Aigner L, Borger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. J Extracell Vesicles. 2015;4. https://doi.org/10.3402/jev.v4.30087.

  111. Paniushkina L, Grueso-Navarro E, Cheng X, Nazarenko I. Chapter twelve - three-dimensional cell models for extracellular vesicles production, isolation, and characterization. Methods Enzymol. 2020;645:209–30. https://doi.org/10.1016/bs.mie.2020.09.005.

    Article  CAS  PubMed  Google Scholar 

  112. Kang H, Bae YH, Kwon Y, Kim S, Park J. Extracellular vesicles generated using bioreactors and their therapeutic effect on the acute kidney injury model. Adv Healthc Mater. 2021;11(4). https://doi.org/10.1002/adhm.202101606.

Download references

Acknowledgements

Figures were created using Biorender.com.

Funding

This research is supported by NIH NIGMS 1R35GM133794.

Author information

Authors and Affiliations

Authors

Contributions

All authors are engaged for conceptualizing and manuscript drafting.

Corresponding author

Correspondence to Mei He.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erwin, N., Serafim, M.F. & He, M. Enhancing the Cellular Production of Extracellular Vesicles for Developing Therapeutic Applications. Pharm Res 40, 833–853 (2023). https://doi.org/10.1007/s11095-022-03420-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03420-w

Keywords

Navigation