Skip to main content
Log in

Exosomes derived from astrocytes after oxygen-glucose deprivation promote differentiation and migration of oligodendrocyte precursor cells in vitro

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Excessive release of glutamate, oxidative stress, inflammation after ischemic brain injury can lead to demyelination. Astrocytes participate in the maturation and differentiation of oligodendrocyte precursor cells (OPCs), and play multiple roles in the process of demyelination and remyelination. Here, we studied the role of Astrocyte-derived exosomes (AS-Exo) under ischemic conditions in proliferation, differentiation and migration of OPCs in vitro.

Methods and results

Exosomes were collected from astrocytes supernatant by differential centrifugation from control astrocytes (CTexo), mild hypoxia astrocytes (O2R24exo) which were applied oxygen-glucose deprivation for 2 h and reperfusion for 24 h (OGD2hR24h) and severe hypoxia astrocytes (O4R24exo) which were applied oxygen-glucose deprivation for 4 h and reperfusion for 24 h (OGD4hR24h). Exosomes (20 µg/ml) were co-cultured with OPCs for 24 h and their proliferation, differentiation and migration were detected. The results showed that AS-Exo under severe hypoxia (O4R24exo) inhibit the proliferation of OPCs. Meanwhile, all exosomes from three groups can promote OPCs differentiation and migration. Compared to control, the expressions of MAG and MBP, markers of mature oligodendrocytes, were significantly increased in AS-Exo treatment groups. AS-Exo treatment significantly increased chemotaxis for OPCs.

Conclusions

AS-Exo improve OPCs’ differentiation and migration, whereas AS-Exo with severe hypoxic precondition suppress OPCs’ proliferation. AS-Exo may be a potential therapeutic target for myelin regeneration and repair in white matter injury or other demyelination related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are included in the manuscript submission.

References

  1. Fern RF, Matute C, Stys PK (2014) White matter injury: ischemic and nonischemic. Glia 62:1780–1789. https://doi.org/10.1002/glia.22722

    Article  PubMed  Google Scholar 

  2. Miyamoto N, Maki T, Pham LD, Hayakawa K, Seo JH, Mandeville ET, Mandeville JB, Kim KW, Lo EH, Arai K (2013) Oxidative stress interferes with white matter renewal after prolonged cerebral hypoperfusion in mice. Stroke 44:3516–3521. https://doi.org/10.1161/STROKEAHA.113.002813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kiray H, Lindsay SL, Hosseinzadeh S, Barnett SC (2016) The multifaceted role of astrocytes in regulating myelination. Exp Neurol 283:541–549. https://doi.org/10.1016/j.expneurol.2016.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lundgaard I, Osorio MJ, Kress BT, Sanggaard S, Nedergaard M (2014) White matter astrocytes in health and disease. Neuroscience 276:161–173. https://doi.org/10.1016/j.neuroscience.2013.10.050

    Article  CAS  PubMed  Google Scholar 

  5. Wang Q, Wang Z, Tian Y, Zhang H, Fang Y, Yu Z, Wang W, Xie M, Ding F (2018) Inhibition of astrocyte Connexin 43 channels facilitates the differentiation of oligodendrocyte precursor cells under hypoxic conditions in vitro. J Mol Neurosci 64:591–600. https://doi.org/10.1007/s12031-018-1061-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science. https://doi.org/10.1126/science.aau6977

  7. Chen JL, Chopp M (2018) Exosome therapy for stroke. Stroke 49:1083–1090. https://doi.org/10.1161/Strokeaha.117.018292

    Article  PubMed  PubMed Central  Google Scholar 

  8. Riazifar M, Pone EJ, Lotvall J, Zhao W (2017) Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol 57:125–154. https://doi.org/10.1146/annurev-pharmtox-061616-030146

    Article  CAS  PubMed  Google Scholar 

  9. Li H, Luo Y, Zhu L, Hua W, Zhang Y, Zhang H, Zhang L, Li Z, Xing P, Zhang Y, Hong B, Yang P, Liu J (2019) Glia-derived exosomes: promising therapeutic targets. Life Sci 239:116951. https://doi.org/10.1016/j.lfs.2019.116951

    Article  CAS  PubMed  Google Scholar 

  10. Zhang ZG, Buller B, Chopp M (2019) Exosomes—beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol 15:193–203. https://doi.org/10.1038/s41582-018-0126-4

    Article  PubMed  Google Scholar 

  11. Pei X, Li Y, Zhu L, Zhou Z (2019) Astrocyte-derived exosomes suppress autophagy and ameliorate neuronal damage in experimental ischemic stroke. Exp Cell Res 382:111474. https://doi.org/10.1016/j.yexcr.2019.06.019

    Article  CAS  PubMed  Google Scholar 

  12. Pei X, Li Y, Zhu L, Zhou Z (2020) Astrocyte-derived exosomes transfer miR-190b to inhibit oxygen and glucose deprivation-induced autophagy and neuronal apoptosis. Cell Cycle 19:906–917. https://doi.org/10.1080/15384101.2020.1731649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sollvander S, Nikitidou E, Brolin R, Soderberg L, Sehlin D, Lannfelt L, Erlandsson A (2016) Accumulation of amyloid-beta by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons. Mol Neurodegener 11:38. https://doi.org/10.1186/s13024-016-0098-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen Y, Xia K, Chen L, Fan D (2019) Increased interleukin-6 levels in the astrocyte-derived exosomes of sporadic amyotrophic lateral sclerosis patients. Front Neurosci 13:574. https://doi.org/10.3389/fnins.2019.00574

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shiow LR, Favrais G, Schirmer L, Schang AL, Cipriani S, Andres C, Wright JN, Nobuta H, Fleiss B, Gressens P, Rowitch DH (2017) Reactive astrocyte COX2-PGE2 production inhibits oligodendrocyte maturation in neonatal white matter injury. Glia 65:2024–2037. https://doi.org/10.1002/glia.23212

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang R, Zhang X, Zhang J, Fan Y, Shen Y, Hu W, Chen Z (2012) Oxygen-glucose deprivation induced glial scar-like change in astrocytes. PLoS ONE 7:e37574. https://doi.org/10.1371/journal.pone.0037574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miyamoto N, Maki T, Shindo A, Liang AC, Maeda M, Egawa N, Itoh K, Lo EK, Lok J, Ihara M, Arai K (2015) Astrocytes promote oligodendrogenesis after white matter damage via brain-derived neurotrophic factor. J Neurosci 35:14002–14008. https://doi.org/10.1523/JNEUROSCI.1592-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lombardi M, Parolisi R, Scaroni F, Bonfanti E, Gualerzi A, Gabrielli M, Kerlero de Rosbo N, Uccelli A, Giussani P, Viani P, Garlanda C, Abbracchio MP, Chaabane L, Buffo A, Fumagalli M, Verderio C (2019) Detrimental and protective action of microglial extracellular vesicles on myelin lesions: astrocyte involvement in remyelination failure. Acta Neuropathol. https://doi.org/10.1007/s00401-019-02049-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Coppi E, Maraula G, Fumagalli M, Failli P, Cellai L, Bonfanti E, Mazzoni L, Coppini R, Abbracchio MP, Pedata F, Pugliese AM (2013) UDP-glucose enhances outward K(+) currents necessary for cell differentiation and stimulates cell migration by activating the GPR17 receptor in oligodendrocyte precursors. Glia 61:1155–1171. https://doi.org/10.1002/glia.22506

    Article  PubMed  Google Scholar 

  20. Shi H, Hu X, Leak RK, Shi Y, An C, Suenaga J, Chen J, Gao Y (2015) Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Exp Neurol 272:17–25. https://doi.org/10.1016/j.expneurol.2015.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koo E, Sheldon RA, Lee BS, Vexler ZS, Ferriero DM (2017) Effects of therapeutic hypothermia on white matter injury from murine neonatal hypoxia-ischemia. Pediatr Res 82:518–526. https://doi.org/10.1038/pr.2017.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468:214–222. https://doi.org/10.1038/nature09611

    Article  CAS  PubMed  Google Scholar 

  23. Xiong M, Li J, Ma SM, Yang Y, Zhou WH (2013) Effects of hypothermia on oligodendrocyte precursor cell proliferation, differentiation and maturation following hypoxia ischemia in vivo and in vitro. Exp Neurol 247:720–729. https://doi.org/10.1016/j.expneurol.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  24. Wu X, Qu X, Zhang Q, Dong F, Yu H, Yan C, Qi D, Wang M, Liu X, Yao R (2014) Quercetin promotes proliferation and differentiation of oligodendrocyte precursor cells after oxygen/glucose deprivation-induced injury. Cell Mol Neurobiol 34:463–471. https://doi.org/10.1007/s10571-014-0030-4

    Article  CAS  PubMed  Google Scholar 

  25. Patel JR, McCandless EE, Dorsey D, Klein RS (2010) CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proc Natl Acad Sci USA 107:11062–11067. https://doi.org/10.1073/pnas.1006301107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tekkok SB, Brown AM, Westenbroek R, Pellerin L, Ransom BR (2005) Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J Neurosci Res 81:644–652. https://doi.org/10.1002/jnr.20573

    Article  CAS  PubMed  Google Scholar 

  27. Berghoff SA, Gerndt N, Winchenbach J, Stumpf SK, Hosang L, Odoardi F, Ruhwedel T, Bohler C, Barrette B, Stassart R, Liebetanz D, Dibaj P, Mobius W, Edgar JM, Saher G (2017) Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat Commun 8:14241. https://doi.org/10.1038/ncomms14241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li T, Giaume C, Xiao L (2014) Connexins-mediated glia networking impacts myelination and remyelination in the central nervous system. Mol Neurobiol 49:1460–1471. https://doi.org/10.1007/s12035-013-8625-1

    Article  CAS  PubMed  Google Scholar 

  29. Niu J, Li T, Yi C, Huang N, Koulakoff A, Weng C, Li C, Zhao CJ, Giaume C, Xiao L (2016) Connexin-based channels contribute to metabolic pathways in the oligodendroglial lineage. J Cell Sci 129:1902–1914. https://doi.org/10.1242/jcs.178731

    Article  CAS  PubMed  Google Scholar 

  30. Fasciani I, Pluta P, Gonzalez-Nieto D, Martinez-Montero P, Molano J, Paino CL, Millet O, Barrio LC (2018) Directional coupling of oligodendrocyte connexin-47 and astrocyte connexin-43 gap junctions. Glia 66:2340–2352. https://doi.org/10.1002/glia.23471

    Article  PubMed  Google Scholar 

  31. Pusic AD, Pusic KM, Clayton BL, Kraig RP (2014) IFNgamma-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. J Neuroimmunol 266:12–23. https://doi.org/10.1016/j.jneuroim.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  32. Han Y, Seyfried D, Meng Y, Yang D, Schultz L, Chopp M, Seyfried D (2018) Multipotent mesenchymal stromal cell-derived exosomes improve functional recovery after experimental intracerebral hemorrhage in the rat. J Neurosurg. https://doi.org/10.3171/2018.2.JNS171475

    Article  Google Scholar 

  33. Xin H, Liu Z, Buller B, Li Y, Golembieski W, Gan X, Wang F, Lu M, Ali MM, Zhang ZG, Chopp M (2020) MiR-17-92 enriched exosomes derived from multipotent mesenchymal stromal cells enhance axon-myelin remodeling and motor electrophysiological recovery after stroke. J Cereb Blood Flow Metab. https://doi.org/10.1177/0271678X20950489

    Article  PubMed  Google Scholar 

  34. Pusic KM, Pusic AD, Kraig RP (2016) Environmental enrichment stimulates immune cell secretion of exosomes that promote CNS myelination and may regulate inflammation. Cell Mol Neurobiol 36:313–325. https://doi.org/10.1007/s10571-015-0269-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pusic AD, Kraig RP (2014) Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination. Glia 62:284–299. https://doi.org/10.1002/glia.22606

    Article  PubMed  Google Scholar 

  36. Williams JL, Gatson NN, Smith KM, Almad A, McTigue DM, Whitacre CC (2013) Serum exosomes in pregnancy-associated immune modulation and neuroprotection during CNS autoimmunity. Clin Immunol 149:236–243. https://doi.org/10.1016/j.clim.2013.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gosselin RD, Meylan P, Decosterd I (2013) Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation. Front Cell Neurosci 7:251. https://doi.org/10.3389/fncel.2013.00251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chiarini A, Armato U, Gardenal E, Gui L, Dal Pra I (2017) Amyloid beta-exposed human astrocytes overproduce phospho-tau and overrelease it within exosomes, effects suppressed by calcilytic NPS 2143-further implications for Alzheimer’s therapy. Front Neurosci 11:217. https://doi.org/10.3389/fnins.2017.00217

    Article  PubMed  PubMed Central  Google Scholar 

  39. Willis CM, Menoret A, Jellison ER, Nicaise AM, Vella AT, Crocker SJ (2017) A refined bead-free method to identify astrocytic exosomes in primary glial cultures and blood plasma. Front Neurosci 11:335. https://doi.org/10.3389/fnins.2017.00335

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Fengfei Ding for helpful discussion.

Funding

The study was supported by the National Natural Science Foundation of China (81974180, 81571113). The Innovative Scientific Research foundation of HUST (2017KFYXJJ097).

Author information

Authors and Affiliations

Authors

Contributions

MX conceived the study and designed experiments. YX, YT, YW performed the experiments and wrote the manuscript. YX, GS, QW, LX and WW analyzed the results. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Minjie Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Animal protocols were approved by the Institutional Animal Care and Use Committee at Tongji Medical College, Huazhong University of Science and Technology.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2021_6557_MOESM1_ESM.tif

Supplementary Fig. 1 Identification of OPCs. OPCs were identified by PDGFR-α immunostaining. Scar bar = 50 μm (TIF 10129.7 kb)

11033_2021_6557_MOESM2_ESM.tif

Supplementary Fig. 2 Apoptosis after the intervention of exosomes in OPCs. Tunel staining showed the amount of apoptosis after the intervention of exosomes in different groups was rarely. Scar bar = 100 μm (TIF 19864.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Tian, Y., Wang, Y. et al. Exosomes derived from astrocytes after oxygen-glucose deprivation promote differentiation and migration of oligodendrocyte precursor cells in vitro. Mol Biol Rep 48, 5473–5484 (2021). https://doi.org/10.1007/s11033-021-06557-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06557-w

Keywords

Navigation