Skip to main content
Log in

Computational Fluid Dynamics (CFD) Guided Spray Drying Recommendations for Improved Aerosol Performance of a Small-Particle Antibiotic Formulation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to implement computational fluid dynamics (CFD) simulations and aerosol characterization experiments to determine best-case spray drying conditions of a tobramycin excipient enhanced growth (Tobi-EEG) formulation for use in a pediatric air-jet dry powder inhaler (DPI).

Methods

An iterative approach was implemented in which sets of spray drying conditions were explored using CFD simulations followed by lead candidate selection, powder production and in vitro aerosol testing. CFD simulations of a small-particle spray dryer were performed to capture droplet drying parameters and surface-averaged temperature and relative humidity (RH) conditions in the powder collection region. In vitro aerosol testing was performed for the selected powders using the pediatric air-jet DPI, cascade impaction, and aerosol transport through a pediatric mouth-throat (MT) model to a tracheal filter.

Results

Based on comparisons of CFD simulations and in vitro powder performance, recommended drying conditions for small-particle powders with electrostatic collection include: (i) reducing the CFD-predicted drying parameters of κavg and κmax to values below 3 μm2/ms and 114 μm2/ms, respectively; (ii) maintaining the Collector Surface RH within an elevated range, which for the Tobi-EEG formulation with l-leucine was 20–30 %RH; and (iii) ensuring that particles reaching the collector were fully dried, based on a mass fraction of solute CFD parameter.

Conclusions

Based on the newly recommended spray dryer conditions for small particle aerosols, delivery performance of the lead Tobi-EEG formulation was improved resulting in >60% of the DPI loaded dose passing through the pediatric MT model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

3D:

Three dimensional

AS:

Albuterol sulfate

CFD:

Computational fluid dynamics

CoV:

Coefficient of variation

DPI:

Dry powder inhaler

DVS:

Dynamic vapor sorption

ED:

Emitted dose

EEG:

Excipient enhanced growth

FPF:

Fine particle fraction

HP:

High performance

HPLC:

High performance liquid chromatography

ISR:

Time integral of saturation ratio

LC-MS:

Liquid chromatography-mass spectrometry

LPM:

Liters per minute

LRN:

Low Reynolds number

MMAD:

Mass median aerodynamic diameter

MN:

Mannitol

MP:

Mouthpiece

MT:

Mouth-throat

NGI:

Next Generation Impactor

ODE:

Ordinary differential equation

PDE:

Partial differential equation

RH:

Relative humidity

RMM:

Rapid mixing model

SD:

Standard deviation

SR:

Saturation ratio

T:

Temperature

Tobi:

Tobramycin

USP:

United States Pharmacopeia

References

  1. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25:999–1022.

    Article  CAS  PubMed  Google Scholar 

  2. Vehring R, Foss WR, Lechuga-Ballesteros D. Particle formation in spray drying. J Aerosol Sci. 2007;38:728–46.

    Article  CAS  Google Scholar 

  3. Weers JG, Miller DP. Formulation design of dry powders for inhalation. J Pharm Sci. 2015;104:3259–88.

    Article  CAS  PubMed  Google Scholar 

  4. Weers JG, Bell J, Chan HK, Cipolla D, Dunbar C, Hickey AJ, Smith IJ. Pulmonary formulations: what remains to be done? J Aerosol Med Pulm Drug Deliv. 2010;23:S5–S23.

    Article  CAS  PubMed  Google Scholar 

  5. Masters K. Spray drying—an introduction to principles, operational practice and applications. London: Leonard Hill; 1972.

    Google Scholar 

  6. Chan HK, Kwok PCL. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev. 2011;63:406–16.

    Article  CAS  PubMed  Google Scholar 

  7. Chan H-K. Dry powder aerosol drug delivery - Opportunities for colloid and surface scientists. Colloids Surf A: Physicochem Eng Asp. 2006;284–285:50–5.

    Article  Google Scholar 

  8. Hoe S, Ivey JW, Boraey MA, Shamsaddini-Shahrbabak A, Javaheri E, Matinkhoo S, Finlay WH, Vehring R. Use of a fundamental approach to spray-drying formulation design to facilitate the development of multi-component dry powder aerosols for respiratory drug delivery. Pharm Res. 2014;31:449–65.

    Article  CAS  PubMed  Google Scholar 

  9. Vicente J, Pinto J, Menezes J, Gaspar F. Fundamental analysis of particle formation in spray drying. Powder Technol. 2013;247:1–7.

    Article  CAS  Google Scholar 

  10. Son Y-J, Longest PW, Hindle M. Aerosolization characteristics of dry powder inhaler formulations for the excipient enhanced growth (EEG) application: effect of spray drying process conditions on aerosol performance. Int J Pharm. 2013;443:137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Belotti S, Rossi A, Colombo P, Bettini R, Rekkas D, Politis S, Colombo G, Balducci AG, Buttini F. Spray-dried amikacin sulphate powder for inhalation in cystic fibrosis patients: the role of ethanol in particle formation. Eur J Pharm Biopharm. 2015;93:165–72.

    Article  CAS  PubMed  Google Scholar 

  12. Wu X, Hayes D, Zwischenberger JB, Kuhn RJ, Mansour HM. Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation. Drug Des Dev Ther. 2013;7:59–72.

    CAS  Google Scholar 

  13. Boc S, Momin MA, Farkas DR, Longest W, Hindle M. Development and characterization of excipient enhanced growth (EEG) surfactant powder formulations for treating neonatal respiratory distress syndrome. AAPS PharmSciTech. 2021;22:1–12.

    Article  Google Scholar 

  14. Longest P, Farkas D, Hassan A, Hindle M. Computational fluid dynamics (CFD) simulations of spray drying: linking drying parameters with experimental aerosolization performance. Pharm Res. 2020;37:101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baldelli A, Power RM, Miles RE, Reid JP, Vehring R. Effect of crystallization kinetics on the properties of spray dried microparticles. Aerosol Sci Technol. 2016;50:693–704.

    Article  CAS  Google Scholar 

  16. Baldelli A, Boraey MA, Nobes DS, Vehring R. Analysis of the particle formation process of structured microparticles. Mol Pharm. 2015;12:2562–73.

    Article  CAS  PubMed  Google Scholar 

  17. Baldelli A, Vehring R. Control of the radial distribution of chemical components in spray-dried crystalline microparticles. Aerosol Sci Technol. 2016;50:1130–42.

    Article  CAS  Google Scholar 

  18. Feng A, Boraey M, Gwin M, Finlay P, Kuehl P, Vehring R. Mechanistic models facilitate efficient development of leucine containing microparticles for pulmonary drug delivery. Int J Pharm. 2011;409:156–63.

    Article  CAS  PubMed  Google Scholar 

  19. Sirignano WA. Fluid dynamics and transport of droplets and sprays. Cambridge: Cambridge University Press; 1999.

    Book  Google Scholar 

  20. Kim EH-J, Dong Chen X, Pearce D. On the mechanisms of surface formation and the surface compositions of industrial milk powders. Dry Technol. 2003;21:265–78.

    Article  CAS  Google Scholar 

  21. Chen XD. Heat-mass transfer and structure formation during drying of single food droplets. Dry Technol. 2004;22:179–90.

    Article  Google Scholar 

  22. Ordoubadi M, Gregson FK, Melhem O, Barona D, Miles RE, D’Sa D, Gracin S, Lechuga-Ballesteros D, Reid JP, Finlay WH. Multi-solvent microdroplet evaporation: modeling and measurement of spray-drying kinetics with inhalable pharmaceutics. Pharm Res. 2019;36:100.

    Article  PubMed  Google Scholar 

  23. Ferziger JH, Peric M. Computational methods for fluid dynamics. Berlin: Springer-Verlag; 1999.

    Book  Google Scholar 

  24. Longest PW, Bass K, Dutta R, Rani V, Thomas ML, El-Achwah A, Hindle M. Use of computational fluid dynamics deposition modeling in respiratory drug delivery. Expert Opin Drug Deliv. 2019;16:7–26.

    Article  CAS  PubMed  Google Scholar 

  25. Longest PW, Hindle M, Das Choudhuri S, Byron PR. Numerical simulations of capillary aerosol generation: CFD model development and comparisons with experimental data. Aerosol Sci Technol. 2007;41:952–73.

    Article  CAS  Google Scholar 

  26. Longest PW, Hindle M. Numerical model to characterize the size increase of combination drug and hygroscopic excipient nanoparticle aerosols. Aerosol Sci Technol. 2011;45:884–99.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Longest PW, Hindle M. Condensational growth of combination drug-excipient submicrometer particles: comparison of CFD predictions with experimental results. Pharm Res. 2012;29:707–21.

    Article  CAS  PubMed  Google Scholar 

  28. Spence BM, Longest PW, Wei X, Dhapare S, Hindle M. Development of a high flow nasal cannula (HFNC) and pharmaceutical aerosol combination device. J Aerosol Med Pulm Drug Deliv. 2019;32:224–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramachandran RP, Akbarzadeh M, Paliwal J, Cenkowski S. Computational fluid dynamics in drying process modelling—a technical review. Food Bioprocess Technol. 2018;11:271–92.

    Article  Google Scholar 

  30. Poozesh S, Lu K, Marsac PJ. On the particle formation in spray drying process for bio-pharmaceutical applications: interrogating a new model via computational fluid dynamics. Int J Heat Mass Transf. 2018;122:863–76.

    Article  CAS  Google Scholar 

  31. Hassan A, Farkas D, Longest W, Hindle M. Characterization of excipient enhanced growth (EEG) tobramycin dry powder aerosol formulations. Int J Pharm. 2020;591:120027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee SH, Heng D, Ng WK, Chan H-K, Tan RB. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm. 2011;403:192–200.

    Article  CAS  PubMed  Google Scholar 

  33. Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. New York: Wiley; 1996.

    Google Scholar 

  34. Trujillo FJ, Knoerzer K. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors. Ultrason Sonochem. 2011;18:1263–73.

    Article  CAS  PubMed  Google Scholar 

  35. Wilcox DC. Turbulence modeling for CFD. 2nd ed. California: DCW Industries, Inc.; 1998.

    Google Scholar 

  36. Longest PW, Tian G, Li X, Son Y-J, Hindle M. Performance of combination drug and hygroscopic excipient submicrometer particles from a softmist inhaler in a characteristic model of the airways. Ann Biomed Eng. 2012;40:2596–610.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Longest PW, Tian G, Delvadia R, Hindle M. Development of a stochastic individual path (SIP) model for predicting the deposition of pharmaceutical aerosols: effects of turbulence, polydisperse aerosol size, and evaluation of multiple lung lobes. Aerosol Sci Technol. 2012;46:1271–85.

    Article  CAS  Google Scholar 

  38. Longest PW, Tian G, Walenga RL, Hindle M. Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharm Res. 2012;29:1670–88.

    Article  CAS  PubMed  Google Scholar 

  39. Tian G, Longest PW, Su G, Walenga RL, Hindle M. Development of a stochastic individual path (SIP) model for predicting the tracheobronchial deposition of pharmaceutical aerosols: effects of transient inhalation and sampling the airways. J Aerosol Sci. 2011;42:781–99.

    Article  CAS  Google Scholar 

  40. Green DW. Perry's chemical Engineers' handbook. New York: McGraw-Hill; 1997.

    Google Scholar 

  41. Gosman AD, Ioannides E. Aspects of computer simulation of liquid-fueled combustors. J Energy. 1981;7:482–90.

    Article  Google Scholar 

  42. Bass K, Longest PW. Recommendations for simulating microparticle deposition at conditions similar to the upper airways with two-equation turbulence models. J Aerosol Sci. 2018;119:31–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Longest PW, Kleinstreuer C. Computational models for simulating multicomponent aerosol evaporation in the upper respiratory airways. Aerosol Sci Technol. 2005;39:124–38.

    Article  Google Scholar 

  44. Clift R, Grace JR, Weber ME. Bubbles, drops, and particles. New York: Academic Press; 1978.

    Google Scholar 

  45. Martin A, Newburger J, Adjei A. Extended Hildebrand solubility approach: solubility of theophylline in polar binary solvents. J Pharm Sci. 1980;69:487–91.

    Article  CAS  PubMed  Google Scholar 

  46. Farkas D, Bonasera S, Bass K, Hindle M, Longest PW. Advancement of a positive-pressure dry powder inhaler for children: use of a vertical Aerosolization chamber and three-dimensional rod Array Interface. Pharm Res. 2020;37:177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Longest PW, Son Y-J, Holbrook LT, Hindle M. Aerodynamic factors responsible for the deaggregation of carrier-free drug powders to form micrometer and submicrometer aerosols. Pharm Res. 2013;30:1608–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bass K, Longest PW. Development of DPI patient interfaces for improved aerosol delivery to children. AAPS PharmSciTech. 2020;21:157.

    Article  CAS  PubMed  Google Scholar 

  49. ICRP. Human respiratory tract model for radiological protection. New York: Elsevier Science Ltd.; 1994.

    Google Scholar 

  50. Phalen RF, Oldham MJ, Beaucage CB, Crocker TT, Mortensen JD. Postnatal enlargement of human tracheobronchial airways and implications for particle deposition. Anat Rec. 1985;212:368–80.

    Article  CAS  PubMed  Google Scholar 

  51. Nguyen T, Nieh S. The role of water vapor in the charge elimination process for flowing powders. J Electrost. 1989;22:213–27.

    Article  CAS  Google Scholar 

  52. Li L, Leung SSY, Gengenbach T, Yu J, Gao GF, Tang P, Zhou QT, Chan H-K. Investigation of L-leucine in reducing the moisture-induced deterioration of spray-dried salbutamol sulfate power for inhalation. Int J Pharm. 2017;530:30–9.

    Article  CAS  PubMed  Google Scholar 

  53. Golshahi L, Finlay WH. An idealized child throat that mimics average pediatric oropharyngeal deposition. Aerosol Sci Technol. 2012;46:i–iv.

    Article  CAS  Google Scholar 

  54. Wachtel H, Bickmann D, Breitkreutz J, Langguth P. Can pediatric throat models and air flow profiles improve our dose finding strategy. Respiratory Drug Delivery. 2010;2010:195–204.

    Google Scholar 

  55. Howe C, Hindle M, Bonasera S, Rani V, Longest PW. Initial development of an air-jet dry powder inhaler for rapid delivery of pharmaceutical aerosols to infants. J Aerosol Med Pulm Drug Deliv. 2021;34:57–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Howe C, Momin MA, Farkas DR, Bonasera S, Hindle M, Longest P. Advancement of the infant air-jet dry powder inhaler (DPI): evaluation of different positive-pressure air sources and flow rates. Pharm Res. 2021;38:1615–32.

    Article  CAS  PubMed  Google Scholar 

  57. Farkas D, Hindle M, Bonasera S, Bass K, Longest W. Development of an inline dry powder inhaler for oral or trans-nasal aerosol administration to children. J Aerosol Med Pulm Drug Deliv. 2020;33:83–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Farkas D, Hindle M, Longest PW. Application of an inline dry powder inhaler to deliver high dose pharmaceutical aerosols during low flow nasal cannula therapy. Int J Pharm. 2018;546:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Farkas D, Hindle M, Longest PW. Efficient nose-to-lung aerosol delivery with an inline DPI requiring low actuation air volume. Pharm Res. 2018;35:194.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Farkas D, Hindle M, Longest PW. Development of an inline dry powder inhaler that requires low air volume. J Aerosol Med Pulm Drug Deliv. 2018;31:255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under Award Number R01HD087339 and by the National Heart, Lung and Blood Institute of the National Institutes of Health under Award Number R01HL139673. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Virginia Commonwealth University is currently pursuing patent protection of devices and methods described in this study, which if licensed and commercialized, may provide a future financial interest to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Worth Longest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longest, W., Hassan, A., Farkas, D. et al. Computational Fluid Dynamics (CFD) Guided Spray Drying Recommendations for Improved Aerosol Performance of a Small-Particle Antibiotic Formulation. Pharm Res 39, 295–316 (2022). https://doi.org/10.1007/s11095-022-03180-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03180-7

KEY WORDS

Navigation