Skip to main content
Log in

Condensational Growth of Combination Drug-Excipient Submicrometer Particles for Targeted High Efficiency Pulmonary Delivery: Comparison of CFD Predictions with Experimental Results

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The objective of this study was to investigate the hygroscopic growth of combination drug and excipient submicrometer aerosols for respiratory drug delivery using in vitro experiments and a newly developed computational fluid dynamics (CFD) model.

Methods

Submicrometer combination drug and excipient particles were generated experimentally using both the capillary aerosol generator and the Respimat inhaler. Aerosol hygroscopic growth was evaluated in vitro and with CFD in a coiled tube geometry designed to provide residence times and thermodynamic conditions consistent with the airways.

Results

The in vitro results and CFD predictions both indicated that the initially submicrometer particles increased in mean size to a range of 1.6–2.5 μm for the 50:50 combination of a non-hygroscopic drug (budesonide) and different hygroscopic excipients. CFD results matched the in vitro predictions to within 10% and highlighted gradual and steady size increase of the droplets, which will be effective for minimizing extrathoracic deposition and producing deposition deep within the respiratory tract.

Conclusions

Enhanced excipient growth (EEG) appears to provide an effective technique to increase pharmaceutical aerosol size, and the developed CFD model will provide a powerful design tool for optimizing this technique to produce high efficiency pulmonary delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACI:

Andersen cascade impactor

CA:

citric acid

CAG:

capillary aerosol generator

CFD:

computational fluid dynamics

DPI:

dry powder inhaler

ECG:

enhanced condensational growth

EEG:

enhanced excipient growth

GC:

growth coefficient

HFA:

hydrofluoroalkane

HPLC:

high-performance liquid chromatography

LRN:

low Reynolds number

MDI:

metered dose inhaler

MMAD:

mass median aerodynamic diameter

MN:

mannitol

MT:

mouth-throat

NaCl:

sodium chloride

RH:

relative humidity

SD:

standard deviation

TB:

tracheobronchial

REFERENCES

  1. Longest PW, Hindle M, Das Choudhuri S, Byron PR. Developing a better understanding of spray system design using a combination of CFD modeling and experiment. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM, editors. Proceedings of Respiratory Drug Delivery 2008. Illinois: Davis Healthcare International Publishing; 2008. p. 151–63.

    Google Scholar 

  2. Hindle M, Longest PW. Evaluation of enhanced condensational growth (ECG) for controlled respiratory drug delivery in a mouth-throat and upper tracheobronchial model. Pharm Res. 2010;27:1800–11.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang Y, Gilbertson K, Finlay WH. In vivo-in vitro comparison of deposition in three mouth-throat models with Qvar and Turbuhaler inhalers. J Aerosol Med. 2007;20(3):227–35.

    Article  PubMed  CAS  Google Scholar 

  4. Cheng YS, Fu CS, Yazzie D, Zhou Y. Respiratory deposition patterns of salbutamol pMDI with CFC and HFA-134a formulations in a human airway replica. J Aerosol Med. 2001;14(2):255–66.

    Article  PubMed  CAS  Google Scholar 

  5. Leach CL, Davidson PJ, Bouhuys A. Improved airway targeting with the CFC-free HFA-beclomethasone metered-dose inhaler compared with CFC-beclomethasone. Eur Respir J. 1998;12:1346–53.

    Article  PubMed  CAS  Google Scholar 

  6. Byron PR, Delvadia RR, Longest PW, Hindle M. Stepping into the trachea with realistic physical models: Uncertainties in regional drug deposition from powder inhalers. Respir Drug Deliv. 2010;1:215–24.

    Google Scholar 

  7. Newman SP, Busse WW. Evolution of dry powder inhaler design, formulation, and performance. Respir Med. 2002;96:293–304.

    Article  PubMed  CAS  Google Scholar 

  8. Kamada AK, Szefler SJ, Martin RJ, Boushey HA, Chinchilli VM, Drazen JM, et al. Issues in the use of inhaled glucocorticoids. Am J Respir Crit Care Med. 1996;153(6):1739–48.

    PubMed  CAS  Google Scholar 

  9. Borgstrom L, Olsson B, Thorsson L. Degree of throat deposition can explain the variability in lung deposition of inhaled drugs. J Aerosol Med. 2006;19:473–83.

    Article  PubMed  Google Scholar 

  10. Longest PW, McLeskey JT, Hindle M. Characterization of nanoaerosol size change during enhanced condensational growth. Aerosol Sci Tech. 2010;44:473–83.

    Article  CAS  Google Scholar 

  11. Tian G, Longest PW, Su G, Hindle M. Characterization of respiratory drug delivery with enhanced condensational growth (ECG) using an individual path model of the entire tracheobronchial airways. Ann Biomed Eng. 2011;39(3):1136–53.

    Article  PubMed  Google Scholar 

  12. Longest PW, Hindle M. Numerical model to characterize the size increase of combination drug and hygroscopic excipient nanoparticle aerosols. Aerosol Sci Tech. 2011;45:884–99.

    Article  Google Scholar 

  13. Ferron GA, Oberdorster G, Hennenberg R. Estimation of the deposition of aerosolised drugs in the human respiratory tract due to hygroscopic growth. J Aerosol Med. 1989;2:271.

    Article  Google Scholar 

  14. Finlay WH, Stapleton KW. The effect on regional lung deposition of coupled heat and mass-transfer between hygroscopic droplets and their surrounding phase. J Aerosol Sci. 1995;26(4):655–70.

    Article  CAS  Google Scholar 

  15. Finlay WH. Estimating the type of hygroscopic behavior exhibited by aqueous droplets. J Aerosol Med. 1998;11(4):221–9.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang Z, Kleinstreuer C, Kim CS. Isotonic and hypertonic saline droplet deposition in a human upper airway model. J Aerosol Med. 2006;19(2):184–98.

    Article  PubMed  CAS  Google Scholar 

  17. Longest PW, Hindle M. CFD simulations of enhanced condensational growth (ECG) applied to respiratory drug delivery with comparisons to in vitro data. J Aerosol Sci. 2010;41:805–20.

    Article  PubMed  Google Scholar 

  18. Longest PW, Tian G, Hindle M. Improving the lung delivery of nasally administered aerosols during noninvasive ventilation - An application of enhanced condensational growth (ECG). J Aerosol Med Pulm Drug Deliv. 2011;24(2):103–18. doi:10.1089/jamp.2010.0849.

    Article  PubMed  CAS  Google Scholar 

  19. Longest PW, Kleinstreuer C. Computational models for simulating multicomponent aerosol evaporation in the upper respiratory airways. Aerosol Sci Tech. 2005;39:124–38.

    Article  Google Scholar 

  20. Hindle M, Byron PR, Jashnani RN, Howell TM, Cox KA. High efficiency fine particle generation using novel condensation technology. In: Dalby RN, Byron PR, Farr SJ, editors. Proceedings of Respiratory Drug Delivery VI. Buffalo Grove, IL: Interpharm Press, Inc.; 1998. p. 97–102.

    Google Scholar 

  21. Dalby R, Spallek M, Voshaar T. A review of the development of Respimat soft mist inhaler. Int J Pharm. 2004;283:1–9.

    Article  PubMed  CAS  Google Scholar 

  22. Longest PW, Hindle M. Evaluation of the Respimat Soft Mist inhaler using a concurrent CFD and in vitro approach. J Aerosol Med Pulm Drug Deliv. 2009;22(2):99–112.

    Article  Google Scholar 

  23. Longest PW, Hindle M, Das Choudhuri S, Byron PR. Numerical simulations of capillary aerosol generation: CFD model development and comparisons with experimental data. Aerosol Sci Tech. 2007;41:952–73.

    Article  CAS  Google Scholar 

  24. Ghalichi F, Deng X, Champlain AD, Douville Y, King M, Guidoin R. Low Reynolds number turbulence modeling of blood flow in arterial stenoses. Biorheology. 1998;35(4&5):281–94.

    Article  PubMed  CAS  Google Scholar 

  25. Wilcox DC. Turbulence Modeling for CFD. 2nd ed. California: DCW Industries, Inc.; 1998.

    Google Scholar 

  26. Longest PW, Xi J. Condensational growth may contribute to the enhanced deposition of cigarette smoke particles in the upper respiratory tract. Aerosol Sc Tech. 2008;42:579–602.

    Article  CAS  Google Scholar 

  27. Bird RB, Steward WE, Lightfoot EN. Transport Phenomena. New York: John Wiley & Sons; 1960.

    Google Scholar 

  28. Longest PW, Kleinstreuer C, Buchanan JR. Efficient computation of micro-particle dynamics including wall effects. Comput Fluid. 2004;33(4):577–601.

    Article  Google Scholar 

  29. Longest PW, Xi J. Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci Tech. 2007;41:380–97.

    Article  CAS  Google Scholar 

  30. Allen MD, Raabe OG. Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Sci Tech. 1985;4:269–86.

    Article  CAS  Google Scholar 

  31. Morsi SA, Alexander AJ. An investigation of particle trajectories in two-phase flow systems. J Fluid Mech. 1972;55(2):193–208.

    Article  Google Scholar 

  32. Gosman AD, Ioannides E. Aspects of computer simulation of liquid-fueled combustors. J Energ. 1981;7:482–90.

    Article  Google Scholar 

  33. Crowe CT, Troutt TR, Chung JN. Numerical models for two-phase turbulent flows. Annu Rev Fluid Mech. 1996;28:11–43.

    Article  Google Scholar 

  34. Matida EA, Nishino K, Torii K. Statistical simulation of particle deposition on the wall from turbulent dispersed pipe flow. Int J Heat Fluid Flow. 2000;21:389–402.

    Article  Google Scholar 

  35. Matida EA, Finlay WH, Grgic LB. Improved numerical simulation of aerosol deposition in an idealized mouth-throat. J Aerosol Sci. 2004;35:1–19.

    Article  CAS  Google Scholar 

  36. Ferron GA. The size of soluable aerosol particles as a function of the humidity of the air: Application to the human respiratory tract. J Aerosol Sci. 1977;3:251–67.

    Article  Google Scholar 

  37. Ferron GA, Kreyling WG, Haider B. Inhalation of salt aerosol particles - II. Growth and deposition in the human respiratory tract. J Aerosol Sci. 1988;19(5):611–31.

    Article  CAS  Google Scholar 

  38. Hinds WC. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York: John Wiley and Sons; 1999.

    Google Scholar 

  39. Li W, Hopke PK. Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosol Sci Tech. 1993;19:305–16.

    Article  CAS  Google Scholar 

  40. Robinson R, Yu CP. Theoretical analysis of hygroscopic growth rate of mainstream and sidestream cigarette smoke particles in the human respiratory tract. Aerosol Sci Tech. 1998;28:21–32.

    Article  CAS  Google Scholar 

  41. Fuchs NA, Sutugin AG. Highly Dispersed Aerosols. Ann Arbor: Ann Arbor Science Publ; 1970.

    Google Scholar 

  42. Finlay WH. The Mechanics of Inhaled Pharmaceutical Aerosols. San Diego: Academic; 2001.

    Google Scholar 

  43. Green DW. Perry’s Chemical Engineers’ Handbook. New York: McGraw-Hill; 1997.

    Google Scholar 

  44. Longest PW, Vinchurkar S. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Med Eng Phys. 2007;29(3):350–66.

    Article  PubMed  Google Scholar 

  45. Vinchurkar S, Longest PW. Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Comput Fluid. 2008;37:317–31.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by Award Number R21 HL104319 and R01 HL107333 from the National Heart, Lung, And Blood Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung, And Blood Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Worth Longest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longest, P.W., Hindle, M. Condensational Growth of Combination Drug-Excipient Submicrometer Particles for Targeted High Efficiency Pulmonary Delivery: Comparison of CFD Predictions with Experimental Results. Pharm Res 29, 707–721 (2012). https://doi.org/10.1007/s11095-011-0596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0596-1

KEY WORDS

Navigation