Skip to main content

Advertisement

Log in

Combination of cassette-dosing and microsampling for reduced animal usage for antibody pharmacokinetics in cynomolgus monkeys, wild-type mice, and human FcRn transgenic mice

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to develop a useful antibody PK evaluation tool using a combination of cassette-dosing and microsampling in mice and monkeys in order to reduce the number of animals used.

Methods

Cetuximab, denosumab, infliximab, and a mixture of the three antibodies, i.e., cassette-dosing, were administered intravenously to cynomolgus monkeys, C57BL/6J mice, and homozygous human neonatal Fc-receptor transgenic (Tg32) mice. Mouse blood was collected from one animal continuously via the jugular vein at nine points.

Results

In cynomolgus monkeys, infliximab showed faster elimination in the cassette-dosing group than in the single-dose group. Anti-drug antibody production was observed, but the PK parameters of the clearance and distribution volume were similar in both groups. In C57BL/6J and Tg32 mice, each of the plasma concentrations–time profiles after cassette-dosing were similar to those after single dosing. PK evaluation using a combination of cassette-dosing and microsampling in mice may reduce the number of mice used by approximately 90% compared with the conventional method.

Conclusions

The combination of antibody cassette-dosing and microsampling is a promising PK evaluation method as a high-throughput and reliable with reduced numbers of mice and cynomolgus monkeys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABTS:

2,2-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid

ADA:

Anti-drug antibody

C0 :

Concentration at time 0

CL:

clearance

FcRn:

Neonatal Fc-receptor

hEGFR:

Human epidermal growth factor receptor

hFcRn:

Human neonatal Fc-receptor

hRANKL:

Human receptor activator of nuclear factor-κB ligand

HRP:

Horseradish peroxidase

hTNFα:

Human tumor necrosis factor alpha

IV:

Intravenous

IVIG:

Intravenous immunoglobulin

LCMS:

Liquid chromatography–mass spectrometry

LLOQ:

lower limit of quantitation

mAb:

monoclonal antibody

NCA:

Non-compartmental analysis

PBS-T:

phosphate-buffered saline with 0.05% Tween® 20, pH 7.4

PK:

Pharmacokinetics

SA-MTP:

Streptavidin-coated microtiter plates

t½ :

half-life

Tg32:

homozygous hFcRn transgenic

Vss :

Volume of distribution at steady state

WT:

Wild-type

References

  1. Igawa T, Ishii S, Tachibana T, Maeda A, Higuchi Y, Shimaoka S, et al. Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol. 2010;28:1203–7. https://doi.org/10.1038/nbt.1691.

    Article  CAS  PubMed  Google Scholar 

  2. Kinder M, Greenplate AR, Strohl WR, Jordan RE, Brezski RJ. An fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions. MAbs. 2015;7:494–504. https://doi.org/10.1080/19420862.2015.1022692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sampei Z, Haraya K, Tachibana T, Fukuzawa T, Shida-Kawazoe M, Gan SW, et al. Antibody engineering to generate SKY59, a long-acting anti-C5 recycling antibody. PLoS One. 2018;13:e0209509. https://doi.org/10.1371/journal.pone.0209509.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mackness BC, Jaworski JA, Boudanova E, Park A, Valente D, Mauriac C, et al. Antibody fc engineering for enhanced neonatal fc receptor binding and prolonged circulation half-life. MAbs. 2019;11:1276–88. https://doi.org/10.1080/19420862.2019.1633883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Joyce AP, Wang M, Lawrence-Henderson R, Filliettaz C, Leung SS, Xu X, et al. One mouse, one pharmacokinetic profile: quantitative whole blood serial sampling for biotherapeutics. Pharm Res. 2014;31:1823–33. https://doi.org/10.1007/s11095-013-1286-y.

    Article  CAS  PubMed  Google Scholar 

  6. Betts A, Keunecke A, van Steeg TJ, van der Graaf PH, Avery LB, Jones H, et al. Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: A comparison between human, cynomolgus monkey and hFcRn Tg32 transgenic mouse using a population-modeling approach. mAbs. 2018;10;751–764. https://doi.org/10.1080/19420862.2018.1462429.

  7. Nakamura G, Ozeki K, Nagayasu M, Nambu T, Nemoto T, Hosoya KI. Predicting method for the human plasma concentration-time profile of a monoclonal antibody from the half-life of non-human primates. Biol Pharm Bull. 2020;43:823–30. https://doi.org/10.1248/bpb.b19-01042.

    Article  CAS  PubMed  Google Scholar 

  8. Haraya K, Tachibana T, Nanami M, Ishigai M. Application of human FcRn transgenic mice as a pharmacokinetic screening tool of monoclonal antibody. Xenobiotica; the fate of foreign compounds in biological systems. 2014;44:1127–34. https://doi.org/10.3109/00498254.2014.941963.

    Article  CAS  PubMed  Google Scholar 

  9. Oitate M, Nakayama S, Ito T, Kurihara A, Okudaira N, Izumi T. Prediction of human plasma concentration-time profiles of monoclonal antibodies from monkey data by a species-invariant time method. Drug metabolism and pharmacokinetics. 2012;27:354–9. https://doi.org/10.2133/dmpk.dmpk-11-sh-059.

    Article  CAS  PubMed  Google Scholar 

  10. Oitate M, Masubuchi N, Ito T, Yabe Y, Karibe T, Aoki T, et al. Prediction of human pharmacokinetics of therapeutic monoclonal antibodies from simple allometry of monkey data. Drug metabolism and pharmacokinetics. 2011;26:423–30. https://doi.org/10.2133/dmpk.dmpk-11-rg-011.

    Article  CAS  PubMed  Google Scholar 

  11. Avery LB, Wang M, Kavosi MS, Joyce A, Kurz JC, Fan YY, et al. Utility of a human FcRn transgenic mouse model in drug discovery for early assessment and prediction of human pharmacokinetics of monoclonal antibodies. MAbs. 2016;8:1064–78. https://doi.org/10.1080/19420862.2016.1193660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dostalek M, Prueksaritanont T, Kelley RF. Pharmacokinetic de-risking tools for selection of monoclonal antibody lead candidates. MAbs. 2017;9:756–66. https://doi.org/10.1080/19420862.2017.1323160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conner KP, Pastuskovas CV, Soto M, Thomas VA, Wagner M, Rock DA. Preclinical characterization of the ADME properties of a surrogate anti-IL-36R monoclonal antibody antagonist in mouse serum and tissues. MAbs. 2020;12:1746520. https://doi.org/10.1080/19420862.2020.1746520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang H, Zeng J, Titsch C, Voronin K, Akinsanya B, Luo L, et al. Fully validated LC-MS/MS assay for the simultaneous quantitation of coadministered therapeutic antibodies in cynomolgus monkey serum. Anal Chem. 2013;85:9859–67. https://doi.org/10.1021/ac402420v.

    Article  CAS  PubMed  Google Scholar 

  15. Li H, Ortiz R, Tran LT, Salimi-Moosavi H, Malella J, James CA, et al. Simultaneous analysis of multiple monoclonal antibody biotherapeutics by LC-MS/MS method in rat plasma following cassette-dosing. AAPS J. 2013;15:337–46. https://doi.org/10.1208/s12248-012-9435-5.

    Article  CAS  PubMed  Google Scholar 

  16. Liu B, Chang J, Gordon WP, Isbell J, Zhou Y, Tuntland T. Snapshot PK: a rapid rodent in vivo preclinical screening approach. Drug Discov Today. 2008;13:360–7. https://doi.org/10.1016/j.drudis.2007.10.014.

    Article  PubMed  Google Scholar 

  17. Manitpisitkul P, White RE. Whatever happened to cassette-dosing pharmacokinetics? Drug Discov Today. 2004;9:652–8. https://doi.org/10.1016/S1359-6446(04)03137-X.

    Article  CAS  PubMed  Google Scholar 

  18. Nagilla R, Nord M, McAtee JJ, Jolivette LJ. Cassette dosing for pharmacokinetic screening in drug discovery: comparison of clearance, volume of distribution, half-life, mean residence time, and oral bioavailability obtained by cassette and discrete dosing in rats. J Pharm Sci. 2011;100:3862–74. https://doi.org/10.1002/jps.22525.

    Article  CAS  PubMed  Google Scholar 

  19. Smith NF, Raynaud FI, Workman P. The application of cassette dosing for pharmacokinetic screening in small-molecule cancer drug discovery. Mol Cancer Ther. 2007;6:428–40. https://doi.org/10.1158/1535-7163.MCT-06-0324.

    Article  CAS  PubMed  Google Scholar 

  20. Musteata FM. Pharmacokinetic applications of microdevices and microsampling techniques. Bioanalysis. 2009;1:171–85. https://doi.org/10.4155/bio.09.18.

    Article  CAS  PubMed  Google Scholar 

  21. Rahavendran SV, Vekich S, Skor H, Batugo M, Nguyen L, Shetty B, et al. Discovery pharmacokinetic studies in mice using serial microsampling, dried blood spots and microbore LC-MS/MS. Bioanalysis. 2012;4:1077–95. https://doi.org/10.4155/bio.12.85.

    Article  CAS  PubMed  Google Scholar 

  22. Cetuximab (Erbitux) New Drug Application (NDA). PMDA (Pharmaceuticals and Medical Devices Agency). 2008. https://www.pmda.go.jp/drugs/2008/P200800039/index.html. Accessed 2 Jan 2021.

  23. Denosumab (Ranmark) NDA. PMDA. 2012. https://www.pmda.go.jp/drugs/2012/P201200013/index.html. Accessed 2 Jan 2021.

  24. Infliximab (Remicade) NDA. PMDA. 2002. https://www.pmda.go.jp/drugs/2002/P200200002/index.html. Accessed 2 Jan 2021.

  25. Shirasaki Y, Ito Y, Kikuchi M, Imamura Y, Hayashi T. Validation studies on blood collection from the jugular vein of conscious mice. Journal of the American Association for Laboratory Animal Science : JAALAS. 2012;51:345–51.

    CAS  PubMed  Google Scholar 

  26. Stubenrauch K, Wessels U, Essig U, Vogel R, Schleypen J. Evaluation of a generic immunoassay with drug tolerance to detect immune complexes in serum samples from cynomolgus monkeys after administration of human antibodies. J Pharm Biomed Anal. 2010;52:249–54. https://doi.org/10.1016/j.jpba.2009.12.029.

    Article  CAS  PubMed  Google Scholar 

  27. Rojas JR, Taylor RP, Cunningham MR, Rutkoski TJ, Vennarini J, Jang H, et al. Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys. J Pharmacol Exp Ther. 2005;313:578–85. https://doi.org/10.1124/jpet.104.079277.

    Article  CAS  PubMed  Google Scholar 

  28. Ober RJ, Radu CG, Ghetie V, Ward ES. Differences in promiscuity for antibody–FcRn interactions across species: implications for therapeutic antibodies. Int Immunol. 2001;13:1551–9. https://doi.org/10.1093/intimm/13.12.1551.

    Article  CAS  PubMed  Google Scholar 

  29. Stein C, Kling L, Proetzel G, Roopenian DC, de Angelis MH, Wolf E, et al. Clinical chemistry of human FcRn transgenic mice. Mammalian genome : official journal of the International Mammalian Genome Society. 2012;23:259–69. https://doi.org/10.1007/s00335-011-9379-6.

    Article  CAS  Google Scholar 

  30. Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al Khabbaz H, Brown AC, et al. Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol. 2006;18:1759–69. https://doi.org/10.1093/intimm/dxl110.

    Article  CAS  PubMed  Google Scholar 

  31. Xiao JJ. Pharmacokinetic models for FcRn-mediated IgG disposition. J Biomed Biotechnol. 2012;2012:282989–13. https://doi.org/10.1155/2012/282989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones HM, Tolsma J, Zhang Z, Jasper P, Luo H, Weber GL, et al. A physiologically-based pharmacokinetic model for the prediction of 'Half-life Extension' and 'Catch and Release' monoclonal antibody pharmacokinetics. CPT Pharmacometrics Syst Pharmacol. 2020;9:534–41. https://doi.org/10.1002/psp4.12547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhisa Ozeki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagayasu, M., Ozeki, K. Combination of cassette-dosing and microsampling for reduced animal usage for antibody pharmacokinetics in cynomolgus monkeys, wild-type mice, and human FcRn transgenic mice. Pharm Res 38, 583–592 (2021). https://doi.org/10.1007/s11095-021-03028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03028-6

Key Words

Navigation