Skip to main content

Advertisement

Log in

Clinical chemistry of human FcRn transgenic mice

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Mice genetically engineered to express human FcRn are valuable models for the evaluation of therapeutic antibodies in the context of human FcRn in vivo. However, only limited clinical chemistry information on these mouse strains is available. Thus, we have compared 30 clinical chemical parameters of C57BL/6J wild-type mice, murine FcRn-knockout mice, and two human FcRn transgenic mouse strains expressing human FcRn in the absence of murine FcRn. Since FcRn-mediated recycling prevents albumin and IgG from intracellular degradation, significant differences for both proteins were observed in the murine FcRn-knockout mice. Mice lacking FcRn show lower IgG and albumin levels compared to wild-type mice. The most prominent differences in clinical chemical parameters can be explained by secondary effects of the altered albumin levels of murine FcRn-knockout mice on liver metabolism, as similar tendencies have been observed in analbuminemic Nagase rats and hypoalbuminemic human patients, showing an overall increased liver metabolism. Both human FcRn transgenic strains show clinical chemical parameters similar to those found for wild-type mice, with the exception of endogenous IgG levels, which are greatly reduced in these mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersen JT, Daba MB, Berntzen G, Michaelsen TE, Sandlie I (2010) Cross-species binding analyses of mouse and human neonatal Fc receptor show dramatic differences in immunoglobulin G and albumin binding. J Biol Chem 285:4826–4836

    Article  PubMed  Google Scholar 

  • Ando S, Kon K, Tanaka Y, Nagase S, Nagai Y (1980) Characterization of hyperlipidemia in Nagase analbuminemia rat (NAR). J Biochem 87:1859–1862

    PubMed  CAS  Google Scholar 

  • Avery RA, Alpert E, Weigand K, Dugaiczyk A (1983) Structural integrity of the human albumin gene in congenital analbuminemia. Biochem Biophys Res Commun 116:817–821

    Article  PubMed  CAS  Google Scholar 

  • Baldo G, Fellin R, Manzato E, Baiocchi MR, Ongaro G, Baggio G, Fabiani F, Pauluzzi S, Crepaldi G (1983) Characterization of hyperlipidemia in two patients with analbuminemia. Clin Chim Acta 128:307–319

    Article  PubMed  CAS  Google Scholar 

  • Baldo-Enzi G, Baiocchi MR, Vigna G, Andrian C, Mosconi C, Fellin R (1987) Analbuminaemia: a natural model of metabolic compensatory systems. J Inherit Metab Dis 10:317–329

    Article  PubMed  CAS  Google Scholar 

  • Ballmer PE (2001) Causes and mechanisms of hypoalbuminaemia. Clin Nutr 20:271–273

    Article  PubMed  CAS  Google Scholar 

  • Braschi S, Lagrost L, Florentin E, Martin C, Athias A, Gambert P, Krempf M, Lallemant C, Jacotot B (1996) Increased cholesteryl ester transfer activity in plasma from analbuminemic patients. Arterioscler Thromb Vasc Biol 16:441–449

    Article  PubMed  CAS  Google Scholar 

  • Burgess LJ, Marais AD (2001) The use of simvastatin in analbuminaemia. Cardiovasc Drugs Ther 15:555–558

    Article  PubMed  CAS  Google Scholar 

  • Campagnoli M, Rossi A, Palmqvist L, Flisberg A, Niklasson A, Minchotti L, Galliano M (2002) A novel splicing mutation causes an undescribed type of analbuminemia. Biochim Biophys Acta 1586:43–49

    PubMed  CAS  Google Scholar 

  • Campagnoli M, Sala A, Labo S, Rossi A, Neuhaus TJ, Braegger CP, Minchiotti L, Galliano M (2005) Analbuminemia in a Swiss family is caused by a C → T transition at nucleotide 4446 of the albumin gene. Clin Biochem 38:819–823

    Article  PubMed  CAS  Google Scholar 

  • Campagnoli M, Rosipal S, Debreova M, Rosipal R, Sala A, Romano A, Labo S, Galliano M, Minchiotti L (2006) Analbuminemia in a Slovak Romany (gypsy) family: case report and mutational analysis. Clin Chim Acta 365:188–193

    Article  PubMed  CAS  Google Scholar 

  • Campagnoli M, Hansson P, Dolcini L, Caridi G, Dagnino M, Candiano G, Bruschi M, Palmqvist L, Galliano M, Minchiotti L (2008) Analbuminemia in a Swedish male is caused by the Kayseri mutation (c228_229delAT). Clin Chim Acta 396:89–92

    Article  PubMed  CAS  Google Scholar 

  • Catanozzi S, Rocha JC, Nakandakare ER, Oliveira HC, Quintao EC (1994) Nagase analbuminemic rats have faster plasma triacylglycerol and VLDL synthesis rates. Biochim Biophys Acta 1212:103–108

    PubMed  CAS  Google Scholar 

  • Champy MF, Selloum M, Zeitler V, Caradec C, Jung B, Rousseau S, Pouilly L, Sorg T, Auwerx J (2008) Genetic background determines metabolic phenotypes in the mouse. Mamm Genome 19:318–331

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury C, Mehnaz S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC, Anderson CL (2003) The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med 197:315–322

    Article  PubMed  CAS  Google Scholar 

  • Cormode EJ, Lyster DM, Israels S (1975) Analbuminemia in a neonate. J Pediatr 86:862–867

    Article  PubMed  CAS  Google Scholar 

  • Dammacco F, Miglietta A, D’Addabbo A, Fratello A, Moschetta R, Bonomo L (1980) Analbuminemia: report of a case and review of the literature. Vox Sang 39:153–161

    Article  PubMed  CAS  Google Scholar 

  • Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Jiang W, Wroblewski VJ (2007a) Humanized IgG1 variants with differential binding properties to the neonatal Fc receptor: relationship to pharmacokinetics in mice and primates. Drug Metab Dispos 35:86–94

    Article  PubMed  CAS  Google Scholar 

  • Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Wroblewski VJ (2007b) Monoclonal antibody clearance. Impact of modulating the interaction of IgG with the neonatal Fc receptor. J Biol Chem 282:1709–1717

    Article  PubMed  CAS  Google Scholar 

  • Emori T, Takahashi M, Sugiyama K, Shumiya S, Nagase S (1983) Age-related changes in plasma proteins of analbuminemic rats. Jikken Dobutsu 32:123–132

    PubMed  CAS  Google Scholar 

  • Esumi H, Sato S, Takahashi Y, Nagase S, Sugimura T (1982a) A seven base pair deletion in an intron blocks albumin mRNA processing. Princess Takamatsu Symp 12:87–100

    PubMed  CAS  Google Scholar 

  • Esumi H, Takahashi Y, Sekiya T, Sato S, Nagase S, Sugimura T (1982b) Presence of albumin mRNA precursors in nuclei of analbuminemic rat liver lacking cytoplasmic albumin mRNA. Proc Natl Acad Sci USA 79:734–738

    Article  PubMed  CAS  Google Scholar 

  • Frohlich J, Pudek MR, Cormode EJ, Sellers EM, Abel JG (1981) Further studies on plasma proteins, lipids, and dye- and drug-binding in a child with analbuminemia. Clin Chem 27:1213–1216

    PubMed  CAS  Google Scholar 

  • Gailus-Durner V, Fuchs H, Adler T, Aguilar PA, Becker L, Bolle I, Calzada-Wack J, Dalke C, Ehrhardt N, Ferwagner B, Hans W, Holter SM, Holzlwimmer G, Horsch M, Javaheri A, Kallnik M, Kling E, Lengger C, Morth C, Mossbrugger I, Naton B, Prehn C, Puk O, Rathkolb B, Rozman J, Schrewe A, Thiele F, Adamski J, Aigner B, Behrendt H, Busch DH, Favor J, Graw J, Heldmaier G, Ivandic B, Katus H, Klingenspor M, Klopstock T, Kremmer E, Ollert M, Quintanilla-Martinez L, Schulz H, Wolf E, Wurst W, de Angelis MH (2009) Systemic first-line phenotyping. Methods Mol Biol 530:463–509

    Article  PubMed  CAS  Google Scholar 

  • Galliano M, Campagnoli M, Rossi A, Wirsing von Konig CH, Lyon AW, Cefle K, Yildiz A, Palanduz S, Ozturk S, Minchiotti L (2002) Molecular diagnosis of analbuminemia: a novel mutation identified in two Amerindian and two Turkish families. Clin Chem 48:844–849

    PubMed  CAS  Google Scholar 

  • Gambino R, Desvarieux E, Orth M, Matan H, Ackattupathil T, Lijoi E, Wimmer C, Bower J, Gunter E (1997) The relation between chemically measured total iron-binding capacity concentrations and immunologically measured transferrin concentrations in human serum. Clin Chem 43:2408–2412

    PubMed  CAS  Google Scholar 

  • Gomez JL, Gunnerson KJ, Song M, Li J, Kellum JA (2007) Effects of hypercapnia on BP in hypoalbuminemic and Nagase analbuminemic rats. Chest 131:1295–1300

    Article  PubMed  CAS  Google Scholar 

  • Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N (2006) An engineered human IgG1 antibody with longer serum half-life. J Immunol 176:346–356

    PubMed  CAS  Google Scholar 

  • Inaba M, Morii H, Katsumata T, Goto H, Ishimura E, Kawagishi T, Kamao M, Okano T, Nishizawa Y (2000) Hyperparathyroidism is augmented by ovariectomy in Nagase analbuminemic rats. J Nutr 130:1543–1547

    PubMed  CAS  Google Scholar 

  • Joles JA, Willekes-Koolschijn N, Van Tol A, Geelhoed-Mieras MM, Danse LH, Van GE, Kortlandt W, Erkelens DW, Koomans HA (1991) Hyperlipoproteinemia in one-year-old analbuminemic rats. Atherosclerosis 88:35–47

    Article  PubMed  CAS  Google Scholar 

  • Kallee E (1996) Bennhold’s analbuminemia: a follow-up study of the first two cases (1953–1992). J Lab Clin Med 127:470–480

    Article  PubMed  CAS  Google Scholar 

  • Kaysen GA (1988) Albumin metabolism in the nephrotic syndrome: the effect of dietary protein intake. Am J Kidney Dis 12:461–480

    PubMed  CAS  Google Scholar 

  • Kaysen GA (1993) Plasma composition in the nephrotic syndrome. Am J Nephrol 13:347–359

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi H, Tamura S, Nagase S, Tsuiki S (1983) Hypertriacylglycerolemia and adipose tissue lipoprotein lipase activity in the Nagase analbuminemic rat. Biochim Biophys Acta 744:165–170

    Article  PubMed  CAS  Google Scholar 

  • Kim EJ, Lee AK, Kim SH, Kim SG, Lee MG (2003) Pharmacokinetics and pharmacodynamics of intravenous azosemide in mutant Nagase analbuminemic rats. Drug Metab Dispos 31:194–201

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Bronson CL, Hayton WL, Radmacher MD, Roopenian DC, Robinson JM, Anderson CL (2006) Albumin turnover: FcRn-mediated recycling saves as much albumin from degradation as the liver produces. Am J Physiol Gastrointest Liver Physiol 290:G352–G360

    Article  PubMed  CAS  Google Scholar 

  • Klempt M, Rathkolb B, Fuchs E, de Angelis MH, Wolf E, Aigner B (2006) Genotype-specific environmental impact on the variance of blood values in inbred and F1 hybrid mice. Mamm Genome 17:93–102

    Article  PubMed  Google Scholar 

  • Koot BG, Houwen R, Pot DJ, Nauta J (2004) Congenital analbuminaemia: biochemical and clinical implications. A case report and literature review. Eur J Pediatr 163:664–670

    PubMed  Google Scholar 

  • Kuo TT, de Muinck EJ, Claypool SM, Yoshida M, Nagaishi T, Aveson VG, Lencer WI, Blumberg RS (2009) N-glycan moieties in neonatal Fc receptor determine steady-state membrane distribution and directional transport of IgG. J Biol Chem 284:8292–8300

    Article  PubMed  CAS  Google Scholar 

  • Ladenson JH, Lewis JW, McDonald JM, Slatopolsky E, Boyd JC (1979) Relationship of free and total calcium in hypercalcemic conditions. J Clin Endocrinol Metab 48:393–397

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie PI, Messer M (1976) Studies on the origin and excretion of serum alpha-amylase in the mouse. Comp Biochem Physiol B 54:103–106

    Article  PubMed  CAS  Google Scholar 

  • Maugeais C, Braschi S, Ouguerram K, Maugeais P, Mahot P, Jacotot B, Darmaun D, Magot T, Krempf M (1997) Lipoprotein kinetics in patients with analbuminemia. Evidence for the role of serum albumin in controlling lipoprotein metabolism. Arterioscler Thromb Vasc Biol 17:1369–1375

    Article  PubMed  CAS  Google Scholar 

  • Montoyo HP, Vaccaro C, Hafner M, Ober RJ, Mueller W, Ward ES (2009) Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice. Proc Natl Acad Sci USA 106(8):2788–2793

    Article  PubMed  CAS  Google Scholar 

  • Nagase S, Shimamune K, Shumiya S (1979) Albumin-deficient rat mutant. Science 205:590–591

    Article  PubMed  CAS  Google Scholar 

  • Nagase S, Shimamune K, Shumiya S (1980) Albumin-deficient rat mutant: an animal model for analbuminemia. Jikken Dobutsu 29:33–38

    PubMed  CAS  Google Scholar 

  • Nicklas W, Baneux P, Boot R, Decelle T, Deeny AA, Fumanelli M, Illgen-Wilcke B (2002) Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab Anim 36:20–42

    Article  PubMed  CAS  Google Scholar 

  • Ober RJ, Radu CG, Ghetie V, Ward ES (2001) Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol 13:1551–1559

    Article  PubMed  CAS  Google Scholar 

  • Ochrietor JD, Harrison KA, Zahedi K, Mortensen RF (2000) Role of STAT3 and C/EBP in cytokine-dependent expression of the mouse serum amyloid P-component (SAP) and C-reactive protein (CRP) genes. Cytokine 12:888–899

    Article  PubMed  CAS  Google Scholar 

  • Payne RB, Little AJ, Williams RB, Milner JR (1973) Interpretation of serum calcium in patients with abnormal serum proteins. Br Med J 4:643–646

    Article  PubMed  CAS  Google Scholar 

  • Payne RB, Carver ME, Morgan DB (1979) Interpretation of serum total calcium: effects of adjustment for albumin concentration on frequency of abnormal values and on detection of change in the individual. J Clin Pathol 32:56–60

    Article  PubMed  CAS  Google Scholar 

  • Peters T (1996) All about albumin: biochemistry, genetics, and medical applications. Academic Press, San Diego

    Google Scholar 

  • Peterson J, Bengtsson-Olivecrona G, Olivecrona T (1986) Mouse preheparin plasma contains high levels of hepatic lipase with low affinity for heparin. Biochim Biophys Acta 878:65–70

    PubMed  CAS  Google Scholar 

  • Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al KH, Brown AC, Presta LG, Meng YG, Roopenian DC (2006) Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol 18:1759–1769

    Article  PubMed  CAS  Google Scholar 

  • Prinsen BH, Kaysen GA, Klomp LW, De BJ, Barrett PH, Thornalley PJ, Battah S, Berger R, Rabelink TJ, der Velden MG (2002) Idiopathic hypoalbuminemia explained by reduced synthesis rate and an increased catabolic rate. Clin Biochem 35:545–553

    Article  PubMed  CAS  Google Scholar 

  • Rathkolb B, Decker T, Fuchs E, Soewarto D, Fella C, Heffner S, Pargent W, Wanke R, Balling R, de Hrabe AM, Kolb HJ, Wolf E (2000) The clinical-chemical screen in the Munich ENU Mouse Mutagenesis Project: screening for clinically relevant phenotypes. Mamm.Genome 11:543–546

    Article  PubMed  CAS  Google Scholar 

  • Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725

    Article  PubMed  CAS  Google Scholar 

  • Roopenian DC, Christianson GJ, Sproule TJ, Brown AC, Akilesh S, Jung N, Petkova S, Avanessian L, Choi EY, Shaffer DJ, Eden PA, Anderson CL (2003) The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 170:3528–3533

    PubMed  CAS  Google Scholar 

  • Roopenian DC, Christianson GJ, Sproule TJ (2010) Human FcRn transgenic mice for pharmacokinetic evaluation of therapeutic antibodies. Methods Mol Biol 602:93–104

    Article  PubMed  CAS  Google Scholar 

  • Ruot B, Breuille D, Rambourdin F, Bayle G, Capitan P, Obled C (2000) Synthesis rate of plasma albumin is a good indicator of liver albumin synthesis in sepsis. Am J Physiol Endocrinol Metab 279:E244–E251

    PubMed  CAS  Google Scholar 

  • Shin Y, Vaziri ND, Willekes N, Kim CH, Joles JA (2005) Effects of gender on hepatic HMG-CoA reductase, cholesterol 7alpha-hydroxylase, and LDL receptor in hereditary analbuminemia. Am J Physiol Endocrinol Metab 289:E993–E998

    Article  PubMed  CAS  Google Scholar 

  • Sierra F, Pittet AC, Schibler U (1986) Different tissue-specific expression of the amylase gene Amy-1 in mice and rats. Mol Cell Biol 6:4067–4076

    PubMed  CAS  Google Scholar 

  • Sugiyama K, Emori T, Shumiya S, Nagase S (1984) Anemia and potassium permeability of red blood cells in analbuminemic rats. Jikken Dobutsu 33:307–318

    PubMed  CAS  Google Scholar 

  • Sun X, Kaysen GA (1994) Albumin and transferrin synthesis are increased in H4 cells by serum from analbuminemic or nephrotic rats. Kidney Int 45(5):1381–1387

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Jones H Jr., Joles JA, van TA, Kaysen GA (1992) Apolipoprotein gene expression in analbuminemic rats and in rats with Heymann nephritis. Am J Physiol 262:F755–F761

    PubMed  CAS  Google Scholar 

  • Takahashi M, Kusumi K, Shumiya S, Nagase S (1983) Plasma lipid concentrations and enzyme activities in Nagase analbuminemia rats (NAR). Jikken Dobutsu 32:39–46

    PubMed  CAS  Google Scholar 

  • Vaccaro C, Bawdon R, Wanjie S, Ober RJ, Ward ES (2006) Divergent activities of an engineered antibody in murine and human systems have implications for therapeutic antibodies. Proc Natl Acad Sci USA 103:18709–18714

    Article  PubMed  CAS  Google Scholar 

  • Van Tol A, Jansen EH, Koomans HA, Joles JA (1991) Hyperlipoproteinemia in Nagase analbuminemic rats: effects of pravastatin on plasma (apo)lipoproteins and lecithin:cholesterol acyltransferase activity. J Lipid Res 32:1719–1728

    PubMed  Google Scholar 

  • Vusse GJ (2009) Albumin as fatty acid transporter. Drug Metab Pharmacokinet 24:300–307

    Article  PubMed  Google Scholar 

  • Waldmann TA (1972) Protein-losing enteropathy and kinetic studies of plasma protein metabolism. Semin Nucl Med 2:251–263

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vlasak J, Li Y, Pristatsky P, Fang Y, Pittman T, Roman J, Wang Y, Prueksaritanont T, Ionescu R (2011) Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol Immunol 48:860–866

    Article  PubMed  CAS  Google Scholar 

  • Ward ES, Ober RJ (2009) Chapter 4: Multitasking by exploitation of intracellular transport functions the many faces of FcRn. Adv Immunol 103:77–115

    Article  PubMed  CAS  Google Scholar 

  • Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IW, Sproule TJ, Lazar GA, Roopenian DC, Desjarlais JR (2010) Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 28:157–159

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Hansson GK (2004) Effect of sex and age on serum biochemical reference ranges in C57BL/6J mice. Comp Med 54:176–178

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The German Mouse Clinic is supported by grants from the German Federal Ministry of Education and Research (NGFNplus: 01GS0850, 01GS0851) and the European Union (EUMODIC LSHG-2006-037188). We thank Elfi Holupirek and Andreas Wolfert for excellent technical support in serum analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Stein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, C., Kling, L., Proetzel, G. et al. Clinical chemistry of human FcRn transgenic mice. Mamm Genome 23, 259–269 (2012). https://doi.org/10.1007/s00335-011-9379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9379-6

Keywords

Navigation