Skip to main content
Log in

Identification of Factors of Importance for Spray Drying of Small Interfering RNA-Loaded Lipidoid-Polymer Hybrid Nanoparticles for Inhalation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Background

With the recent approval of the first small interfering RNA (siRNA) therapeutic formulated as nanoparticles, there is increased incentive for establishing the factors of importance for the design of stable solid dosage forms of such complex nanomedicines.

Methods

The aims of this study were: (i) to identify factors of importance for the design of spray-dried siRNA-loaded lipidoid-poly(DL-lactic-co-glycolic acid) hybrid nanoparticles (LPNs), and (ii) to evaluate their influence on the resulting powders by using a quality-by-design approach. Critical formulation and process parameters were linked to critical quality attributes (CQAs) using design of experiments, and an optimal operating space (OOS) was identified.

Results

A series of CQAs were identified based on the quality target product profile. The loading (ratio of LPNs to the total solid content) and the feedstock concentration were determined as critical parameters, which were optimized systematically. Mannitol was chosen as stabilizing excipient due to the low water content of the resulting powders. The loading negatively affected the colloidal stability of the LPNs, whereas feedstock concentration correlated positively with the powder particle size. The optimal mannitol-based solid formulation, defined from the OOS, displayed a loading of 5% (w/w), mass median aerodynamic diameter of 3.3 ± 0.2 μm, yield of 60.6 ± 6.6%, and a size ratio of 1.15 ± 0.03. Dispersed micro-embedded LPNs had preserved physicochemical characteristics as well as in vitro siRNA release profile and gene silencing, as compared to non-spray-dried LPNs.

Conclusion

The optimal solid dosage forms represent robust formulations suitable for higher scale-up manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACT:

β-actin

CCF:

Central composite face

CFP:

Critical formulation parameter

COPD:

Chronic obstructive pulmonary disease

CP:

Crossing point

CPP:

Critical processing parameter

CQAs:

Critical quality attributes

DEPC:

Diethyl pyrocarbonate

DoE:

Design of experiments

FBS:

Fetal bovine serum

GUS:

β-glucuronidase

hATTR:

Hereditary transthyretin-mediated amyloidosis

HD:

Heparin and detergent

LPN:

Lipidoid-polymer hybrid nanoparticle

LPS:

Lipopolysaccharide

MLR:

Multiple linear regression

MMAD:

Mass median aerodynamic diameter

OFAT:

One-factor-at-a-time

OG:

Octyl β-D-glucopyranoside

OOS:

Optimal operating space

PDI:

Polydispersity index

PLGA:

Poly(DL-lactic-co-glycolic acid)

PVA:

Polyvinylalcohol

QbD:

Quality-by-design approach

QTPP:

Quality target product profile

SEM:

Scanning electron microscopy

siRNA:

Small interfering RNA

Tg :

Glass transition temperature

TNF:

Tumor necrosis factor

TTR:

Transthyretin

References

  1. Hoy SM. Patisiran: first global approval. Drugs. 2018;78(15):1625–31.

    Article  CAS  PubMed  Google Scholar 

  2. Kulkarni JA, Cullis PR, van der Meel R. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther. 2018;28(3):146–57.

    Article  CAS  PubMed  Google Scholar 

  3. Sosnik A, Seremeta KP. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interf Sci. 2015;223:40–54.

    Article  CAS  Google Scholar 

  4. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022.

    Article  CAS  PubMed  Google Scholar 

  5. Kumar S, Gokhale R, Burgess DJ. Sugars as bulking agents to prevent nano-crystal aggregation during spray or freeze-drying. Int J Pharm. 2014;471(1–2):303–11.

    Article  CAS  PubMed  Google Scholar 

  6. Bohr A, Water J, Beck-Broichsitter M, Yang M. Nanoembedded microparticles for stabilization and delivery of drug-loaded nanoparticles. Curr Pharm Des. 2015;21(40):5829–44.

    Article  CAS  PubMed  Google Scholar 

  7. Kumar S, Gokhale R, Burgess DJ. Quality by design approach to spray drying processing of crystalline nanosuspensions. Int J Pharm. 2014;464(1–2):234–42.

    Article  CAS  PubMed  Google Scholar 

  8. Crowe JH, Hoekstra FA, Crowe LM. Anhydrobiosis. Annu Rev Physiol. 1992;54:579–99.

    Article  CAS  PubMed  Google Scholar 

  9. Crowe JH, Carpenter JF, Crowe LM. The role of vitrification in anhydrobiosis. Annu Rev Physiol. 1998;60:73–103.

    Article  CAS  PubMed  Google Scholar 

  10. Koynova R, Brankov J, Tenchov B. Modulation of lipid phase behavior by kosmotropic and chaotropic solutes : Experiment and thermodynamic theory. Eur Biophys J. 1997;25(4):261–74.

    Article  CAS  PubMed  Google Scholar 

  11. Branca C, Maccarrone S, Magazu S, Maisano G, Bennington SM, Taylor J. Tetrahedral order in homologous disaccharide-water mixtures. J Chem Phys. 2005;122(17):174513.

    Article  CAS  PubMed  Google Scholar 

  12. Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008;26(5):561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thanki K, Zeng X, Justesen S, Tejlmann S, Falkenberg E, Van Driessche E, et al. Engineering of small interfering RNA-loaded lipidoid-poly(DL-lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: a quality by design-based approach. Eur J Pharm Biopharm. 2017;120:22–33.

    Article  CAS  PubMed  Google Scholar 

  14. Jansen MAA, Klausen LH, Thanki K, Lyngso J, Skov Pedersen J, Franzyk H, et al. Lipidoid-polymer hybrid nanoparticles loaded with TNF siRNA suppress inflammation after intra-articular administration in a murine experimental arthritis model. Eur J Pharm Biopharm. 2019;142:38–48.

    Article  CAS  PubMed  Google Scholar 

  15. Wouters EF. Local and systemic inflammation in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  16. Cazzola M, Page CP, Calzetta L, Matera MG. Emerging anti-inflammatory strategies for COPD. Eur Respir J. 2012;40(3):724–41.

    Article  CAS  PubMed  Google Scholar 

  17. Cazzola M, Rogliani P, Ora J, Matera MG. Treatment options for moderate-to-very severe chronic obstructive pulmonary disease. Expert Opin Pharmacother. 2016;17(7):977–88.

    Article  CAS  PubMed  Google Scholar 

  18. Jensen DK, Jensen LB, Koocheki S, Bengtson L, Cun D, Nielsen HM, et al. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA. J Control Release. 2012;157(1):141–8.

    Article  CAS  PubMed  Google Scholar 

  19. Jensen LB, Griger J, Naeye B, Varkouhi AK, Raemdonck K, Schiffelers R, et al. Comparison of polymeric siRNA nanocarriers in a murine LPS-activated macrophage cell line: gene silencing, toxicity and off-target gene expression. Pharm Res. 2012;29(3):669–82.

    Article  CAS  PubMed  Google Scholar 

  20. Thanki K, Papai S, Lokras A, Rose F, Falkenberg E, Franzyk H, et al. Application of a quality-by-design approach to optimise lipid-polymer hybrid nanoparticles loaded with a splice-correction antisense oligonucleotide: Maximising loading and intracellular delivery. Pharm Res. 2019;36(3):37.

    Article  PubMed  Google Scholar 

  21. Groneberg DA, Witt C, Wagner U, Chung KF, Fischer A. Fundamentals of pulmonary drug delivery. Respir Med. 2003;97(4):382–7.

    Article  CAS  PubMed  Google Scholar 

  22. Baldinger A, Clerdent L, Rantanen J, Yang M, Grohganz H. Quality by design approach in the optimization of the spray-drying process. Pharm Dev Technol. 2012;17(4):389–97.

    Article  CAS  PubMed  Google Scholar 

  23. Ingvarsson PT, Yang M, Mulvad H, Nielsen HM, Rantanen J, Foged C. Engineering of an inhalable DDA/TDB liposomal adjuvant: a quality-by-design approach towards optimization of the spray drying process. Pharm Res. 2013;30(11):2772–84.

    Article  CAS  PubMed  Google Scholar 

  24. Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5(1):23–36.

    Article  CAS  Google Scholar 

  25. Kim H, Fassihi R. Application of binary polymer system in drug release rate modulation. 2. Influence of formulation variables and hydrodynamic conditions on release kinetics. J Pharm Sci. 1997;86(3):323–8.

    Article  PubMed  Google Scholar 

  26. Maas SG, Schaldach G, Littringer EM, Mescher A, Griesser UJ, Braund DE, et al. The impact of spray drying outlet temperature on the particle morphology of mannitol. Powder Technol. 2011;213(1–3):27–35.

    Article  CAS  Google Scholar 

  27. Jensen DM, Cun D, Maltesen MJ, Frokjaer S, Nielsen HM, Foged C. Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation. J Control Release. 2010;142(1):138–45.

    Article  PubMed  Google Scholar 

  28. Xu E-Y, Guo J, Xu Y, Li H-Y, Seville PC. Influence of excipients on spray-dried powders for inhalation. Powder Technol. 2014;256:217–23.

    Article  CAS  Google Scholar 

  29. Xia D, Shrestha N, van de Streek J, Mu H, Yang M. Spray drying of fenofibrate loaded nanostructured lipid carriers. Asian J Pharm Sci. 2016;11(4):507–15.

    Article  Google Scholar 

  30. Leung SSY, Parumasivam T, Nguyen A, Gengenbach T, Carter EA, Carrigy NB, et al. Effect of storage temperature on the stability of spray dried bacteriophage powders. Eur J Pharm Biopharm. 2018;127:213–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maa YF, Nguyen PA, Andya JD, Dasovich N, Sweeney TD, Shire SJ, et al. Effect of spray drying and subsequent processing conditions on residual moisture content and physical/biochemical stability of protein inhalation powders. Pharm Res. 1998;15(5):768–75.

    Article  CAS  PubMed  Google Scholar 

  32. Crouter A, Briens L. The effect of moisture on the flowability of pharmaceutical excipients. AAPS PharmSciTech. 2014;15(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  33. Chew NY, Chan HK. The role of particle properties in pharmaceutical powder inhalation formulations. J Aerosol Med. 2002;15(3):325–30.

    Article  CAS  PubMed  Google Scholar 

  34. Grasmeijer N, de Waard H, Hinrichs WL, Frijlink HW. A user-friendly model for spray drying to aid pharmaceutical product development. PLoS One. 2013;8(9):e74403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Allison SD, Molina MC, Anchordoquy TJ. Stabilization of lipid/DNA complexes during the freezing step of the lyophilization process: the particle isolation hypothesis. Biochim Biophys Acta. 2000;1468(1–2):127–38.

    Article  CAS  PubMed  Google Scholar 

  36. Costantino HR, Andya JD, Nguyen PA, Dasovich N, Sweeney TD, Shire SJ, et al. Effect of mannitol crystallization on the stability and aerosol performance of a spray-dried pharmaceutical protein, recombinant humanized anti-IgE monoclonal antibody. J Pharm Sci. 1998;87(11):1406–11.

    Article  CAS  PubMed  Google Scholar 

  37. Telang C, Yu L, Suryanarayanan R. Effective inhibition of mannitol crystallization in frozen solutions by sodium chloride. Pharm Res. 2003;20(4):660–7.

    Article  CAS  PubMed  Google Scholar 

  38. Yoshinari T, Forbes RT, York P, Kawashima Y. Crystallisation of amorphous mannitol is retarded using boric acid. Int J Pharm. 2003;258(1–2):109–20.

    Article  CAS  PubMed  Google Scholar 

  39. Bosquillon C, Lombry C, Preat V, Vanbever R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J Control Release. 2001;70(3):329–39.

    Article  CAS  PubMed  Google Scholar 

  40. Amaro MI, Tajber L, Corrigan OI, Healy AM. Optimisation of spray drying process conditions for sugar nanoporous microparticles (NPMPs) intended for inhalation. Int J Pharm. 2011;421(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  41. Maltesen MJ, Bjerregaard S, Hovgaard L, Havelund S, van de Weert M. Quality by design - spray drying of insulin intended for inhalation. Eur J Pharm Biopharm. 2008;70(3):828–38.

    Article  CAS  PubMed  Google Scholar 

  42. Elversson J, Millqvist-Fureby A, Alderborn G, Elofsson U. Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying. J Pharm Sci. 2003;92(4):900–10.

    Article  CAS  PubMed  Google Scholar 

  43. Mosen K, Backstrom K, Thalberg K, Schaefer T, Kristensen HG, Axelsson A. Particle formation and capture during spray drying of inhalable particles. Pharm Dev Technol. 2004;9(4):409–17.

    Article  CAS  PubMed  Google Scholar 

  44. Tsuda A, Henry FS, Butler JP. Particle transport and deposition: basic physics of particle kinetics. Compr Physiol. 2013;3(4):1437–71.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fernandez Tena A, Casan Clara P. Deposition of inhaled particles in the lungs. Arch Bronconeumol. 2012;48(7):240–6.

    Article  PubMed  Google Scholar 

  46. Agnoletti M, Bohr A, Thanki K, Wan F, Zeng X, Boetker JP, et al. Inhalable siRNA-loaded nano-embedded microparticles engineered using microfluidics and spray drying. Eur J Pharm Biopharm. 2017;120:9–21.

    Article  CAS  PubMed  Google Scholar 

  47. Feldmann DP, Merkel OM. The advantages of pulmonary delivery of therapeutic siRNA. Ther Deliv. 2015;6(4):407–9.

    Article  CAS  PubMed  Google Scholar 

  48. Waghmare SP, Pousinis P, Hornby DP, Dickman MJ. Studying the mechanism of RNA separations using RNA chromatography and its application in the analysis of ribosomal RNA and RNA:RNA interactions. J Chromatogr A. 2009;1216(9):1377–82.

    Article  CAS  PubMed  Google Scholar 

  49. Audouy SA, van der Schaaf G, Hinrichs WL, Frijlink HW, Wilschut J, Huckriede A. Development of a dried influenza whole inactivated virus vaccine for pulmonary immunization. Vaccine. 2011;29(26):4345–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

We gratefully acknowledge financial support from the Novo Nordisk Foundation - Denmark (Grant No. NNF17OC0026526), Hørslev-Fonden – Denmark, the Lundbeck Foundation – Denmark (Grant No. R219–2016-908) and Independent Research Fund Denmark (Grant No. DFF-4184-00422). We are also grateful to the Innovative Medicines Initiative Joint Undertaking under grant agreement No.115363 resources which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in kind contribution. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 600207. We acknowledge the Danish Agency for Science, Technology and Innovation for funding the Zetasizer Nano ZS. We also acknowledge the Alfred Benzon Foundation and Drug Research Academy for co-funding the FLUOstar OPTIMA plate reader and Drug Research Academy for funding the Small-Scale Powder Disperser. Novo Nordisk has kindly supplied the Aerodynamic Particle Sizer Spectrometer 3321. The funding sources had no involvement in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; nor in the decision to submit the paper for publication. We are grateful to Emily Falkenberg for synthesizing and purifying L5 and to Xianghui Zeng for technical assistance. The authors report no potential conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilla Foged.

Additional information

Guest Editor: Joshua Reineke

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dormenval, C., Lokras, A., Cano-Garcia, G. et al. Identification of Factors of Importance for Spray Drying of Small Interfering RNA-Loaded Lipidoid-Polymer Hybrid Nanoparticles for Inhalation. Pharm Res 36, 142 (2019). https://doi.org/10.1007/s11095-019-2663-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2663-y

KEY WORDS

Navigation