Skip to main content
Log in

Sustainable strategies for nano-in-micro particle engineering for pulmonary delivery

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

With the increasing popularity and refinement of inhalation therapy, there has been a huge demand for the design and development of fine-tuned inhalable drug particles capable of assuring an efficient delivery to the lungs with optimal therapeutic outcomes. To cope with this demand, novel particle technologies have arisen over the last decade agreeing with the progress of pulmonary therapeutics that were commonly given by injection. Nanotechnology holds a considerable potential in the development of new release mechanisms of active ingredients to the deep lungs. For an accurate deep lung deposition and effective delivery of nanoparticles, respirable nano-in-micro formulations have been extensively investigated. Microparticles with nanoscale features can now be developed, and their functionalities have contributed to stabilize and improve the efficacy of the particulated dosage form. This paper reviews the different types of the aerosolizable nano-in-micro particles, as well as their sustainable production and characterization processes as dry powders. This review also intends to provide a critical insight of the current goals and technologies of particle engineering for the development of pulmonary drug delivery systems with a special emphasis on nano-micro dry powder formulations prepared by spray-drying and supercritical fluid-assisted techniques. The merits and limitations of these technologies are debated with reference to their appliance to specific drug and/or excipient materials. Finally, a list of most recent/ongoing clinical trials regarding pulmonary delivery of this type of formulation is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adami R, Osséo LS, Reverchon E (2009) Micronization of lysozyme by supercritical assisted atomization. Biotechnol Bioeng 104:1162–1170

    Article  Google Scholar 

  • Adami R, Liparoti S, Reverchon E (2011) A new supercritical assisted atomization configuration, for the micronization of thermolabile compounds. Chem Eng J 173:55–61

    Article  Google Scholar 

  • Akiyama Y, Mori T, Katayama Y, Niidome T (2009) The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. J Control Release 139:81–84

    Article  Google Scholar 

  • Alderborn G, Elofsson U, Elversson J, Millqvist-fureby A (2003) Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying. J Pharm Sci 92:900–910

    Article  Google Scholar 

  • Al-Qadi S, Grenha A, Carrión Recio D, Seijo B, Remuñán-López C (2012) Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release 157:383–390

    Article  Google Scholar 

  • Amidi M, Pellikaan HC, de Boer AH, Crommelin DJA, Hennink WE, Jiskoot W (2008) Preparation and physicochemical characterization of supercritically dried insulin-loaded microparticles for pulmonary delivery. Eur J Pharm Biopharm 68:191–200

    Article  Google Scholar 

  • Borm PJA, Kreyling W (2004) Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J Nanosci Nanotechnol 4:521–531

    Article  Google Scholar 

  • Cabral RP (2013) Development of chitosan-based microparticles for pulmonary drug delivery. Dissertation, Univerdade Nova de Lisboa

  • Casimiro T, Barroso T, Figueiredo P, Costa E, Aguiar-Ricardo A (2011) Porous chitosan –drug formulations by scCO2-assisted atomization. In: Proceedings of 13th European meeting on supercritical fluids. http://www.isasf.net/fileadmin/files/Docs/DenHaag/HtmlDir/Papers/P68.pdf. Accessed 20 May 2014

  • Challoner P, Rodriguez C, Tarara T (2012) Tobramycin formulation for treatment of endobronchial infections European Patent 1765288 B1

  • Chattopadhyay P, Gupta RB (2001) Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer. Ind Eng Chem Res 40:3530–3539

    Article  Google Scholar 

  • Chattopadhyay P, Gupta RB (2002) Supercritical CO2 based production of magnetically responsive micro- and nanoparticles for drug targeting. Ind Eng Chem Res 41:6049–6058

    Article  Google Scholar 

  • Choi HS, Ashitate Y, Lee JH, Lee JH, Kim SH, Matsui A, Insin N, Bawendi MG, Semmler-Behnke M, Frangioni JV, Tsuda A (2010) Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 28:1300–1303

    Article  Google Scholar 

  • Chow AHL, Tong HHY, Chattopadhyay P, Shekunov BY (2007) Particle engineering for pulmonary drug delivery. Pharm Res 24:411–437

    Article  Google Scholar 

  • ClinicalTrials.gov (2013) A clinical trial to assess the safety of a measles vaccine (dry powder) administered by two different devices (PMV-001). http://clinicaltrials.gov/show/NCT01557699. Accessed 14 Oct 2014

  • ClinicalTrials.gov (2014) Ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis (Non-CF BE) (RESPIRE 1). http://clinicaltrials.gov/show/NCT01764841. Accessed 14 Oct 2014

  • Couzin-Frankel J (2013) Cancer immunotherapy. Science 342(20):1432–1433

    Article  Google Scholar 

  • Crowther Labiris NR, Holbrook AM, Chrystyn H et al (1999) Dry powder versus intravenous and nebulized gentamicin in cystic fibrosis and bronchiectasis. A pilot study. Am J Respir Crit Care Med 160:1711–1716

    Article  Google Scholar 

  • Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, Torensma R, Figdor CG (2010) Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release 144:118–126

    Article  Google Scholar 

  • Cryan S-A, Sivadas N, Garcia-Contreras L (2007) In vivo animal models for drug delivery across the lung mucosal barrier. Adv Drug Deliv Rev 59:1133–1151

    Article  Google Scholar 

  • Dreaden EC, Austin LA, Mackey MA, El-Sayed MA (2012) Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv 3:457–478

    Article  Google Scholar 

  • Dunbar CA, Concessio NM, Anthony J (1998) Evaluation of atomizer performance in production. Pharm Dev Technol 3:433–441

    Article  Google Scholar 

  • Duncan B, Kim C, Rotello VM (2010) Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J Control Release 148:122–127

    Article  Google Scholar 

  • Elversson J, Millqvist-Fureby A (2005) Particle size and density in spray drying-effects of carbohydrate properties. J Pharm Sci 94:2049–2060

    Article  Google Scholar 

  • Fineberg SE, Kawabata T, Finco-Kent D, Liu C, Krasner A (2005) Antibody response to inhaled insulin in patients with type 1 or type 2 diabetes. An analysis of initial phase II and III inhaled insulin (Exubera) trials and a two-year extension trial. J Clin Endocrinol Metab 90:3287–3294

    Article  Google Scholar 

  • Gabrio BJ, Stein SW, Velasquez DJ (1999) A new method to evaluate plume characteristics of hydrofluoroalkane and chlorofluorocarbon metered dose inhalers. Int J Pharm 186:3–12

    Article  Google Scholar 

  • Geiser M, Quaile O, Wenk A, Wigge C, Eigeldinger-Berthou S, Hirn S, Schäffler M, Schleh C, Möller W, Mall MA, Kreyling WG (2013) Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease. Part Fibre Toxicol 10:19–29

    Article  Google Scholar 

  • Genina N, Räikkönen H, Heinämäki J, Veski P, Yliruusi J (2010) Nano-coating of β-galactosidase onto the surface of lactose by using an ultrasound-assisted technique. AAPS PharmSciTech 11:959–965

    Article  Google Scholar 

  • Gil M, Vicente J, Gaspar F (2010) Scale-up methodology for pharmaceutical spray drying. Chem Today 28:18–22

    Google Scholar 

  • Girotra P, Singh SK, Nagpal K (2013) Supercritical fluid technology: a promising approach in pharmaceutical research. Pharm Dev Technol 18:22–38

    Article  Google Scholar 

  • Gómez-Gaete C, Fattal E, Silva L, Besnard M, Tsapis N (2008) Dexamethasone acetate encapsulation into Trojan particles. J Control Release 128:41–49

    Article  Google Scholar 

  • Grenha A, Remuñán-López C, Carvalho ELS, Seijo B (2008) Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur J Pharm Biopharm 69:83–93

    Article  Google Scholar 

  • Hadinoto K, Zhu K, Tan RBH (2007) Drug release study of large hollow nanoparticulate aggregates carrier particles for pulmonary delivery. Int J Pharm 341:195–206

    Article  Google Scholar 

  • Hardy JG, Chadwick TS (2000) Sustained release drug delivery to the lungs: an option for the future. Clin Pharmacokinet 39:1–4

    Article  Google Scholar 

  • Hickey AJ, Mansour HM, Telko MJ, Xu Z, Smyth HD, Mulder T, McLean R, Langridge J, Papadopoulos D (2007) Physical characterization of component particles included in dry powder inhalers I. Strategy review and static characteristics. J Pharm Sci 96:1282–1301

    Article  Google Scholar 

  • Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 2:12–27

    Article  Google Scholar 

  • Hu J, Dong Y, Pastorin G, Ng WK, Tan RBH (2013) Spherical agglomerates of pure drug nanoparticles for improved pulmonary delivery in dry powder inhalers. J Nanoparticle Res 15:1560–1572

    Article  Google Scholar 

  • Lai Sk, Wang Y-Y, Hanes J (2010) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 61:158–171

    Article  Google Scholar 

  • Kaur G, Narang RK, Rath G, Goyal AK (2012) Advances in pulmonary delivery of nanoparticles. Artif Cells Blood Substit Immobil Biotechnol 40:75–96

    Article  Google Scholar 

  • Kaye SR, Tol SP, Alpar HO (2009) Simultaneously manufactured nano-in-micro (SIMANIM) particles for dry-powder modified-release delivery of antibodies. J Pharm Sci 98:4055–4068

    Article  Google Scholar 

  • Kling J (2008) Inhaled insulin’s last gasp? Nat Biotechnol 26:479–480

    Article  Google Scholar 

  • Klingler C, Müller BW, Steckel H (2009) Insulin-micro- and nanoparticles for pulmonary delivery. Int J Pharm 377:173–179

    Article  Google Scholar 

  • Koushik K, Dhanda DS, Cheruvu NPS, Kompella UB (2004) Pulmonary delivery of deslorelin: large-porous PLGA particles and HPbetaCD complexes. Pharm Res 21:1119–1126

    Article  Google Scholar 

  • Kurmi BD, Kayat J, Gajbhiye V, Tekade RK (2010) Micro- and nanocarrier-mediated lung targeting. Expert Opin Drug Deliv 7:781–794

    Article  Google Scholar 

  • Laube BL, Edwards AM, Dalby RN, Creticos PS, Norman PS (1998) Respiratory pathophysiologic responses: the efficacy of slow versus faster inhalation of cromolyn sodium in protecting against allergen challenge in patients with asthma. J Allergy Clin Immunol 101:475–483

    Article  Google Scholar 

  • Li H-Y, Birchall J (2006) Chitosan-modified dry powder formulations for pulmonary gene delivery. Pharm Res 23:941–950

    Article  Google Scholar 

  • Li Y-Z, Sun X, Gong T, Liu J, Zuo J, Zhang ZR (2010) Inhalable microparticles as carriers for pulmonary delivery of thymopentin-loaded solid lipid nanoparticles. Pharm Res 27:1977–1986

    Article  Google Scholar 

  • Linsenbühler M, Wirth K-E (2005) An innovative dry powder coating process in non-polar liquids producing tailor-made micro-particles. Powder Technol 158:3–20

    Article  Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3:1377–1397

    Article  Google Scholar 

  • Malcolmson RJ, Embleton JK (1998) Dry powder formulations for pulmonary delivery. Pharm Sci Technolo Today 1:394–398

    Article  Google Scholar 

  • Mansour HM, Rhee Y-S, Wu X (2009) Nanomedicine in pulmonary delivery. Int J Nanomed 4:299–319

    Article  Google Scholar 

  • Martín A, Cocero MJ (2008) Micronization processes with supercritical fluids: fundamentals and mechanisms. Adv Drug Deliv Rev 60:339–350

    Article  Google Scholar 

  • Martín Á, Weidner E (2010) PGSS-drying: mechanisms and modeling. J Supercrit Fluids 55:271–281

    Article  Google Scholar 

  • Martín Á, Pham HM, Kilzer A, Kareth S, Weidner E (2010) Micronization of polyethylene glycol by PGSS (Particles from Gas Saturated Solutions)-drying of aqueous solutions. Chem Eng Process Process Intensif 49:1259–1266

    Article  Google Scholar 

  • McGlynn P, Bakale R, Sturge C (2007) Levalbuterol salt US Patent 7256310 B2 10

  • Millqvist-fureby A, Malmsten M (1999) Spray-drying of trypsin—surface characterisation and activity preservation. Int J Pharm 188:243–253

    Article  Google Scholar 

  • Misra A, Hickey AJ, Rossi C, Borchard G, Terada H, Makino K, Fourie PB, Colombo P (2011) Inhaled drug therapy for treatment of tuberculosis. Tuberculosis 91:71–81

    Article  Google Scholar 

  • Moghaddam PH, Ramezani V, Esfandi E, Vatanara A, Nabi-Meiobodi M, Darabi M, Gilani K, Najafabadi AR (2013) Development of a nano–micro carrier system for sustained pulmonary delivery of clarithromycin. Powder Technol 239:478–483

    Article  Google Scholar 

  • Mohajel N, Najafabadi AR, Azadmanesh K, Vatanara A, Moazeni E, Rahimi A, Gilani K (2012) Optimization of a spray drying process to prepare dry powder microparticles containing plasmid nanocomplex. Int J Pharm 423:577–585

    Article  Google Scholar 

  • Newman SP, Wilding IR (1998) Gamma scintigraphy: an in vivo technique for assessing the equivalence of inhaled products. Int J Pharm 170:1–9

    Article  Google Scholar 

  • Nolan LM, Li J, Tajber L, Corrigan OI, Healy AM (2011) Particle engineering of materials for oral inhalation by dry powder inhalers. II-Sodium cromoglycate. Int J Pharm 405:36–46

    Article  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  • Odziomek M, Sosnowski TR, Gradoń L (2012) Conception, preparation and properties of functional carrier particles for pulmonary drug delivery. Int J Pharm 433:51–59

    Article  Google Scholar 

  • Oishi M, Tamura A, Nakamura T, Nagasaki Y (2009) A smart nanoprobe based on fluorescence-quenching PEGylated nanogels containing gold nanoparticles for monitoring the response to cancer therapy. Adv Funct Mater 19:827–834

    Article  Google Scholar 

  • Okamoto H, Nishida S, Todo H, Sakakur Y, Iida K, Danjo K (2003) Pulmonary gene delivery by chitosan-pDNA complex powder prepared by a supercritical carbon dioxide process. J Pharm Sci 92:371–380

    Article  Google Scholar 

  • Ozeki T, Beppu S, Mizoe T, Takashima Y, Yuasa H, Okada H (2006) Preparation of polymeric submicron particle-containing microparticles using a 4-fluid nozzle spray drier. Pharm Res 23:177–183

    Article  Google Scholar 

  • Packhaeuser CB, Lahnstein K, Sitterberg J, Schmehl T, Gessler T, Bakowsky U, Seeger W, Kissel T (2009) Stabilization of aerosolizable nano-carriers by freeze-drying. Pharm Res 26:129–138

    Article  Google Scholar 

  • Pasquali I, Bettini R, Giordano F (2006) Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics. Eur J Pharm Sci 27:299–310

    Article  Google Scholar 

  • Pilcer G, Amighi K (2010) Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm 392:1–19

    Article  Google Scholar 

  • Powell MC, Kanarek MS (2006) Nanomaterial health effects—part 1: background and current knowledge. Wis Med J 105:16–20

    Google Scholar 

  • Pulliam B, Sung JC, Edwards DA (2007) Design of nanoparticle-based dry powder pulmonary vaccines. Expert Opin Drug Deliv 4:651–663

    Article  Google Scholar 

  • Rehman M, Shekunov BY, York P, Lechuga-Ballesteros D, Miller DP, Tan T, Colthorpe P (2004) Optimisation of powders for pulmonary delivery using supercritical fluid technology. Eur J Pharm Sci 22:1–17

    Article  Google Scholar 

  • Restani RB, Conde J, Baptista PV, Cidade MT, Bragança AM, Morgado J, Correia I, Aguiar-Ricardo A, Bonifácio VDB (2014) Polyurea dendrimer for efficient cytosolic siRNA delivery. RSC Adv. doi:10.1039/C4RA0903G

  • Reverchon E (1999) Supercritical antisolvent precipitation of micro- and nano-particles. J Supercrit Fluids 15:1–21

    Article  Google Scholar 

  • Reverchon E (2002) Supercritical-assisted atomization to produce micro- and/or nanoparticles of controlled size and distribution. Ind Eng Chem Res 41:2405–2411

    Article  Google Scholar 

  • Reverchon E (2007) Process for the production of micro and/or nano particles US Patent 7276190 B2. 10

  • Reverchon E, Adami R (2006) Nanomaterials and supercritical fluids. J Supercrit Fluids 37:1–22

    Article  Google Scholar 

  • Reverchon E, Adami R, Caputo G (2006) Supercritical assisted atomization: Performance comparison between laboratory and pilot scale. J Supercrit Fluids 37:298–306

    Article  Google Scholar 

  • Rogueda PG, Traini D (2007) The nanoscale in pulmonary delivery. Part 2: formulation platforms. Expert Opin Drug Deliv 6:607–620

    Article  Google Scholar 

  • Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical excipients. Pharmaceutical Press, London

    Google Scholar 

  • Sadhukha T, Wiedmann TS, Panyam J (2013) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34:5163–5171

    Article  Google Scholar 

  • Sakagami M (2006) In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev 58:60–1030

    Article  Google Scholar 

  • Sanli D, Bozbag SE, Erkey C (2011) Synthesis of nanostructured materials using supercritical CO2: Part I. Physical transformations. J Mater Sci 47:2995–3025

    Article  Google Scholar 

  • Sinsuebpol C, Chatchawalsaisin J, Kulvanich P (2013) Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery. Drug Des Devel Ther 7:861–873

    Google Scholar 

  • Sivadas N, O’Rourke D, Tobin A, Buckley V, Ramtoola Z, Kelly JG, Hickey AJ, Cryan SA (2008) A comparative study of a range of polymeric microspheres as potential carriers for the inhalation of proteins. Int J Pharm 358:159–167

    Article  Google Scholar 

  • Son Y-J, Worth Longest P, Hindle M (2013) Aerosolization characteristics of dry powder inhaler formulations for the excipient enhanced growth (EEG) application: effect of spray drying process conditions on aerosol performance. Int J Pharm 443:137–145

    Article  Google Scholar 

  • Stegemann S, Kopp S, Borchard G, Shah VP, Senel S, Dubey R, Urbanetz N, Cittero M, Schoubben A, Hippchen C, Cade D, Fuglsang A, Morais J, Borgström L, Farshi F, Seyfang KH, Hermann R, van de Putte A, Klebovich I, Hincal A (2013) Developing and advancing dry powder inhalation towards enhanced therapeutics. Eur J Pharm Sci 48:181–194

    Article  Google Scholar 

  • Stephenson GA, Forbes RA, Reutzel-Edens SM (2001) Characterization of the solid state: quantitative issues. Adv Drug Deliv Rev 48:67–90

    Article  Google Scholar 

  • Storey RA, Ingvar Y (2011) Solid state characterization of pharmaceuticals. Wiley, Hoboken

    Book  Google Scholar 

  • Sung JC, Padilla DJ, Garcia-Contreras L, Verberkmoes JL, Durbin D, Peloquin CA, Elbert KJ, Hickey AJ, Edwards DA (2009) Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res 26:55–1847

    Google Scholar 

  • Telko MJ, Dsc AJH (2005) Dry powder inhaler formulation. Respir Care 50:1209–1227

    Google Scholar 

  • Tewa-Tagne P, Briançon S, Fessi H (2006) Spray-dried microparticles containing polymeric nanocapsules: formulation aspects, liquid phase interactions and particles characteristics. Int J Pharm 325:63–74

    Article  Google Scholar 

  • Ticehurst M, Marziano I, Kougoulos E (2014) Process for the preparation of fluticasone propionate form 1 US Patent 0141247 A1 14

  • Tolman JA, Williams RO (2010) Advances in the pulmonary delivery of poorly water-soluble drugs: influence of solubilization on pharmacokinetic properties. Drug Dev Ind Pharm 36:1–30

    Article  Google Scholar 

  • Tonnis WF, Lexmond AJ, Frijlink HW, de Boer AH, Hinrichs WLJ (2013) Devices and formulations for pulmonary vaccination. Expert Opin Drug Deliv 10:1383–1397

  • Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA (2002) Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci USA 99:12001–12005

    Article  Google Scholar 

  • Türk M (1999) Formation of small organic particles by RESS : experimental and theoretical investigations. J Supercrit Fluids 15:79–89

    Article  Google Scholar 

  • Ungaro F, D’Angelo I, Miro A, La Rotonda MI, Quaglia F (2012) Engineered PLGA nano-and micro-carriers for pulmonary delivery: challenges and promises. J Pharm Pharmacol 64:1217–1235

    Article  Google Scholar 

  • Van Der Walle C (2011) Peptide and protein delivery. Elsevier, Oxford

    Google Scholar 

  • Vehring R (2008) Pharmaceutical particle engineering via spray drying. Pharm Res 25:999–1022

    Article  Google Scholar 

  • Wanakule P, Liu GW, Fleury AT, Roy K (2012) Nano-inside-micro: disease-responsive microgels with encapsulated nanoparticles for intracellular drug delivery to the deep lung. J Control Release 162:429–437

    Article  Google Scholar 

  • Weers J, Rao N, Huang D, Miller D, Tarara T (2013) Dry powder formulation of particles that contain two or more active ingridients for treating obstructive or inflammatory airways diseases US Patent 0319411 A1 13

  • Yang W, Peters JI, Williams RO (2008) Inhaled nanoparticles–a current review. Int J Pharm 356:239–247

    Article  Google Scholar 

  • Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky MD, Yeo Y (2009) Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials 30:1947–1953

    Article  Google Scholar 

  • Yang L, Luo J, Shi S, Zhang Q, Sun X, Zhang Z, Gong T (2013) Development of a pulmonary peptide delivery system using porous nanoparticle-aggregate particles for systemic application. Int J Pharm 451:104–111

    Article  Google Scholar 

  • Yeo S-D, Kiran E (2005) Formation of polymer particles with supercritical fluids: a review. J Supercrit Fluids 34:287–308

    Article  Google Scholar 

  • Zhang J, Wu L, Chan H-K, Watanabe W (2011) Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev 63:441–455

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to financial support from Fundação para a Ciência e a Tecnologia (FC&T), through contracts PEst-C/EQB/LA0006/2013, PTDC/EQU–EQU/116097/2009, SFRH/BD/515842011, FEDER and FSE, and MIT-Portugal Program Bioengineering Systems Focus Area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Aguiar-Ricardo.

Additional information

Guest Editors: Carlos Lodeiro Espiño, José Luis Capelo Martinez

This article is part of the topical collection on Composite Nanoparticles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.S., Tavares, M.T. & Aguiar-Ricardo, A. Sustainable strategies for nano-in-micro particle engineering for pulmonary delivery. J Nanopart Res 16, 2602 (2014). https://doi.org/10.1007/s11051-014-2602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2602-0

Keywords

Navigation