Skip to main content
Log in

Engineering of an Inhalable DDA/TDB Liposomal Adjuvant: A Quality-by-Design Approach Towards Optimization of the Spray Drying Process

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6′-dibehenate (TDB).

Methods

A quality by design (QbD) approach was applied to identify and link critical process parameters (CPPs) of the spray drying process to critical quality attributes (CQAs) using risk assessment and design of experiments (DoE), followed by identification of an optimal operating space (OOS). A central composite face-centered design was carried out followed by multiple linear regression analysis.

Results

Four CQAs were identified; the mass median aerodynamic diameter (MMAD), the liposome stability (size) during processing, the moisture content and the yield. Five CPPs (drying airflow, feed flow rate, feedstock concentration, atomizing airflow and outlet temperature) were identified and tested in a systematic way. The MMAD and the yield were successfully modeled. For the liposome size stability, the ratio between the size after and before spray drying was modeled successfully. The model for the residual moisture content was poor, although, the moisture content was below 3% in the entire design space. Finally, the OOS was drafted from the constructed models for the spray drying of trehalose stabilized DDA/TDB liposomes.

Conclusions

The QbD approach for the spray drying process should include a careful consideration of the quality target product profile. This approach implementing risk assessment and DoE was successfully applied to optimize the spray drying of an inhalable DDA/TDB liposomal adjuvant designed for pulmonary vaccination.

Diagram of an optimal operating space highlighting the process design space where the critical criteria are met: White: No criteria met. Dark blue: One criterion met. Light blue: Two criteria met. Green: All criteria met.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CPP:

critical process parameter

CQA:

critical quality attribute

DDA:

dimethyldioctadecylammonium

DoE:

Design of Experiments

FPF:

fine particle fraction

MMAD:

mass median aerodynamic diameter

OOS:

optimal operating space

PDI:

polydispersity index

QbD:

Quality by Design

QTPP:

quality target product profile

TDB:

trehalose-6,6′-dibehenate

VMD:

volumetric mean diameter

References

  1. Bloom DE, Canning D, Weston M. The value of vaccination. World Econ. 2005;6(3):15–39.

    Google Scholar 

  2. Ingvarsson PT, Yang M, Nielsen HM, Rantanen J, Foged C. Stabilization of liposomes during drying. Expert Opin Drug Deliv. 2011;8(3):375–88.

    Article  PubMed  CAS  Google Scholar 

  3. Tonnis WF, Kersten GF, Frijlink HW, Hinrichs WLJ, de Boer AH, Amorij JP. Pulmonary vaccine delivery: a realistic approach? J Aerosol Med Pulm Drug Deliv. 2012;25(5):249–60.

    Article  PubMed  CAS  Google Scholar 

  4. Mobley WC. The effect of Jet-Milling on lyophilized liposomes. Pharm Res. 1998;15(1):149–52.

    Article  PubMed  CAS  Google Scholar 

  5. Seville PC, Li H, Learoyd TP. Spray-dried powders for pulmonary drug delivery. Crit Rev Ther Drug Carrier Syst. 2007;24(4):307–60.

    Article  PubMed  CAS  Google Scholar 

  6. Sou T, Meeusen EN, de Veer M, Morton DAV, Kaminskas LM, McIntosh MP. New developments in dry powder pulmonary vaccine delivery. Trends Biotechnol. 2011;29(4):191–8.

    Article  PubMed  CAS  Google Scholar 

  7. Chow AHL, Tong HHY, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24(3):411–37.

    Article  PubMed  CAS  Google Scholar 

  8. Byron PR. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J Pharm Sci. 1986;75(5):433–8.

    Article  PubMed  CAS  Google Scholar 

  9. Martin TR, Frevert CW. Innate immunity in the lungs. Proc Am Thorac Soc. 2005;2(5):403–11.

    Article  PubMed  CAS  Google Scholar 

  10. Holt PG. Pulmonary dendritic cells in local immunity to inert and pathogenic antigens in the respiratory tract. Proc Am Thorac Soc. 2005;2(2):116–20.

    Article  PubMed  CAS  Google Scholar 

  11. Blank F, Rothen-Rutishauser B, Gehr P. Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am J Respir Cell Mol Biol. 2007;36(6):669–77.

    Article  PubMed  CAS  Google Scholar 

  12. Guideline ICHHT. Pharmaceutical development Q8 (R2). Maryland: ICH. 2009.

  13. Rathore AS, Winkle H. Quality by design for biopharmaceuticals. Nat Biotechnol. 2009;27(1):26.

    Article  PubMed  CAS  Google Scholar 

  14. Yu LX. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res. 2008;25(4):781–91.

    Article  PubMed  CAS  Google Scholar 

  15. Davidsen J, Rosenkrands I, Christensen D, Vangala A, Kirby D, Perrie Y, et al. Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6'-dibehenate) - A novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta Biomembr. 2005;1718(1–2):22–31.

    Article  CAS  Google Scholar 

  16. Holten-Andersen L, Doherty TM, Korsholm KS, Andersen P. Combination of the cationic surfactant dimethyl dioctadecyl ammonium bromide and synthetic mycobacterial cord factor as an efficient adjuvant for tuberculosis subunit vaccines. Infect Immun. 2004;72(3):1608–17.

    Article  PubMed  CAS  Google Scholar 

  17. Agger EM, Rosenkrands I, Hansen J, Brahimi K, Vandahl BS, Aagaard C, et al. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLoS One. 2008;3(9):e3116.

    Article  PubMed  Google Scholar 

  18. Christensen D, Foged C, Rosenkrands I, Nielsen HM, Andersen P, Agger EM. Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying. Biochim Biophys Acta Biomembr. 2007;1768(9):2120–9.

    Article  CAS  Google Scholar 

  19. Ingvarsson PT, Schmidt ST, Christensen D, Larsen NB, Hinrichs WLJ, Andersen P, et al. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01. J Control Release. 2013;167(3):256–64.

    Article  PubMed  CAS  Google Scholar 

  20. Abdul-Fattah AM, Kalonia DS, Pikal MJ. The challenge of drying method selection for protein pharmaceuticals: product quality implications. J Pharm Sci. 2007;96(8):1886–916.

    Article  PubMed  CAS  Google Scholar 

  21. Maury M, Murphy K, Kumar S, Shi L, Lee G. Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer. Eur J Pharm Biopharm. 2005;59(3):565–73.

    Article  PubMed  CAS  Google Scholar 

  22. Crowe LM, Reid DS, Crowe JH. Is trehalose special for preserving dry biomaterials? Biophys J. 1996;71(4):2087–93.

    Article  PubMed  CAS  Google Scholar 

  23. Baldinger A, Clerdent L, Rantanen J, Yang M, Grohganz H. Quality by design approach in the optimization of the spray-drying process. Pharm Dev Technol. 2011;17(4):389–97.

    Article  PubMed  Google Scholar 

  24. Lunney PD, Cogdill RP, Drennen JK. Innovation in pharmaceutical experimentation Part 1: review of experimental designs used in industrial pharmaceutics research and introduction to Bayesian D-optimal experimental design. J Pharm Innov. 2008;3(3):188–203.

    Article  Google Scholar 

  25. Prinn KB, Costantino HR, Tracy M. Statistical modeling of protein spray drying at the lab scale. AAPS PharmSciTech. 2002;3(1):32–9.

    Article  Google Scholar 

  26. Maltesen MJ, Bjerregaard S, Hovgaard L, Havelund S, van de Weert M. Quality by design - spray drying of insulin intended for inhalation. Eur J Pharm Biopharm. 2008;70(3):828–38.

    Article  PubMed  CAS  Google Scholar 

  27. Mosén K, Bäckström K, Thalberg K, Schaefer T, Kristensen HG, Axelsson A. Particle formation and capture during spray drying of inhalable particles. Pharm Dev Technol. 2004;9(4):409–17.

    Article  PubMed  Google Scholar 

  28. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022.

    Article  PubMed  CAS  Google Scholar 

  29. Lebrun P, Krier F, Mantanus J, Grohganz H, Yang M, Rozet E, et al. Design space approach in the optimization of the spray-drying process. Eur J Pharm Biopharm. 2011;80(1):226–34.

    Article  PubMed  Google Scholar 

  30. Sun W, Leopold A, Crowe L, Crowe J. Stability of dry liposomes in sugar glasses. Biophys J. 1996;70(4):1769–76.

    Article  PubMed  CAS  Google Scholar 

  31. Langrish TAG, Fletcher DF. Spray drying of food ingredients and applications of CFD in spray drying. Chem Eng Proc: Proc Int. 2001;40(4):345–54.

    Article  CAS  Google Scholar 

  32. Hamborg M, Jorgensen L, Bojsen AR, Christensen D, Foged C. Protein antigen adsorption to the DDA/TDB liposomal adjuvant: effect on protein structure, stability, and liposome physicochemical characteristics. Pharm Res. 2012;30(1):140–55.

    Article  PubMed  Google Scholar 

  33. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185(2):129–88.

    Article  PubMed  CAS  Google Scholar 

  34. Mhatre R, Rathore AS. Quality by design: An overview of the basic concepts. In: Mhatre R, Rathore AS, editors. Quality by design for biopharmaceuticals: Principles and case studies. 1st ed. Hoboken: Wiley; 2009. p. 1–8.

    Chapter  Google Scholar 

  35. Chan LW, Tan LH, Heng PS. Process analytical technology: application to particle sizing in spray drying. AAPS PharmSciTech. 2008;9(1):259–66.

    Article  PubMed  CAS  Google Scholar 

  36. Hergeth WD, Jaeckle C, Krell M. Industrial process monitoring of polymerization and spray drying processes. Polym React Eng. 2003;11(4):663–714.

    Article  CAS  Google Scholar 

  37. Maltesen MJ, van de Weert M, Grohganz H. Design of experiments-based monitoring of critical quality attributes for the spray-drying process of insulin by NIR spectroscopy. AAPS PharmSciTech. 2012;13(3):747–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments And Disclosures

Jukka Rantanen and Camilla Foged share senior authorship. The authors would like to acknowledge Dorthe Kyed Ørbæk (University of Copenhagen) for assistance with SEM and the Centre for Nano-Vaccines (CNV) and its members for the collaboration. The authors are grateful to The Danish Council for Strategic Research for funding the project (PTI). The funding source had no involvement in the study or the decision to submit the results for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Rantanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingvarsson, P.T., Yang, M., Mulvad, H. et al. Engineering of an Inhalable DDA/TDB Liposomal Adjuvant: A Quality-by-Design Approach Towards Optimization of the Spray Drying Process. Pharm Res 30, 2772–2784 (2013). https://doi.org/10.1007/s11095-013-1096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1096-2

Key words

Navigation