Skip to main content
Log in

Exploration of Antiemetics for Osteoporosis Therapy-Induced Nausea and Vomiting Using PET Molecular Imaging Analysis to Gastrointestinal Pharmacokinetics

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To select appropriate antiemetics relieving teriparatide-induced nausea and vomiting during osteoporosis treatment using PET molecular imaging and pharmacokinetic analysis.

Methods

Rats were pretreated with subcutaneous teriparatide, followed by oral administration of antiemetics with different pharmacological effects. The pharmacokinetics of antiemetics were assessed by oral administration of 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) under free moving conditions in vivo. The effect of teriparatide on the permeability of Caco-2 cell membranes to [18F]FDG was assessed in vitro. The effects of antiemetics on teriparatide-induced suppression of gastrointestinal motility in vivo was assayed by positron emission tomography (PET) using orally administered [18F]FDG.

Results

Teriparatide delayed the time-radioactivity profile of [18F]FDG in blood and significantly reduced its absorption rate constant (k a ), determined from non-compartmental analysis, to 60% of control. In contrast, co-administration of granisetron or mosapride restored the time-radioactivity profile and k a of [18F]FDG to control levels. Teriparatide had no effect on Caco-2 membrane permeability to [18F]FDG. Pharmacokinetic PET imaging data analysis quantitatively showed the pharmacological effects of teriparatide-induced suppression of upper gastrointestinal motility and its restoration by granisetron and mosapride.

Conclusions

Teriparatide-induced abdominal discomfort might be attributed to GI motility, and PET imaging analysis is a useful tool to for the selection of appropriate antiemetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

[18F]FDG:

2-deoxy-2-[18F]fluoro-d-glucose

AUC:

Area under the concentration-time curve

CL:

Oral elimination clearance

GI:

Gastrointestinal

IA:

Injected radioactivity

ka :

Absorption rate constant

k Duo :

Rate constant for the elimination from the duodenum

kel :

Elimination rate constant

k GE :

Gastric emptying rate constant in the stomach

k in :

Rate constant for intestinal transit from the duodenum to the jejunum

k out :

Rate constant for the elimination from the small intestine

MIP:

Maximum intensity projection

MRT:

Mean residence time

NCA:

Non-compartmental analysis

Papp :

Apparent permeability

PET:

Positron emission tomography

PTH:

Parathyroid hormone

ROIs:

Regions of interest

SUV:

Standard uptake value

TACs:

Time-activity curves

Vd :

Volume of distribution

VOIs:

Volumetric regions of interest

References

  1. Miki T, Nakatsuka K, Naka H, Masaki H, Imanishi Y, Ito M, et al. Effect and safety of intermittent weekly administration of human parathyroid hormone 1–34 in patients with primary osteoporosis evaluated by histomorphometry and microstructural analysis of iliac trabecular bone before and after 1 year of treatment. J Bone Miner Metab. 2004;22(6):569–76.

    Article  CAS  PubMed  Google Scholar 

  2. Bakker AD, Joldersma M, Klein-Nulend J, Burger EH. Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells. Am J Physiol Endocrinol Metab. 2003;285(3):E608–613.

    Article  CAS  PubMed  Google Scholar 

  3. Nakamura T, Sugimoto T, Nakano T, Kishimoto H, Ito M, Fukunaga M, et al. Randomized Teriparatide [human parathyroid hormone (PTH) 1–34] Once-Weekly Efficacy Research (TOWER) trial for examining the reduction in new vertebral fractures in subjects with primary osteoporosis and high fracture risk. J Clin Endocrinol Metab. 2012;97(9):3097–106.

    Article  CAS  PubMed  Google Scholar 

  4. Horn CC. The medical implications of gastrointestinal vagal afferent pathways in nausea and vomiting. Curr Pharm Des. 2014;20(16):2703–12.

    Article  CAS  PubMed  Google Scholar 

  5. Azad Khan AK, Piris J, Truelove SC. An experiment to determine the active therapeutic moiety of sulphasalazine. Lancet. 1977;2(8044):892–5.

    Article  CAS  PubMed  Google Scholar 

  6. Hatanaka S, Kondoh M, Kawarabayashi K, Furuhama K. The measurement of gastric emptying in conscious rats by monitoring serial changes in serum acetaminophen level. J Pharmacol Toxicol Methods. 1994;31(3):161–5.

    Article  CAS  PubMed  Google Scholar 

  7. Murata K, Noda K, Kohno K, Samejima M. Pharmacokinetic analysis of concentration data of drugs with irregular absorption profiles using multi-fraction absorption models. J Pharm Sci. 1987;76(2):109–13.

    Article  CAS  PubMed  Google Scholar 

  8. Tubic M, Wagner D, Spahn-Langguth H, Bolger MB, Langguth P. In silico modeling of non-linear drug absorption for the P-gp substrate talinolol and of consequences for the resulting pharmacodynamic effect. Pharm Res. 2006;23(8):1712–20.

    Article  CAS  PubMed  Google Scholar 

  9. Yuen KH. The transit of dosage forms through the small intestine. Int J Pharm. 2010;395(1–2):9–16.

    Article  CAS  PubMed  Google Scholar 

  10. Kimura T, Higaki K. Gastrointestinal transit and drug absorption. Biol Pharm Bull. 2002;25(2):149–64.

    Article  CAS  PubMed  Google Scholar 

  11. Haruta S, Kawai K, Jinnouchi S, Ogawara KI, Higaki K, Tamura S, et al. Evaluation of absorption kinetics of orally administered theophylline in rats based on gastrointestinal transit monitoring by gamma scintigraphy. J Pharm Sci. 2001;90(4):464–73.

    Article  CAS  PubMed  Google Scholar 

  12. Schiller C, Frohlich CP, Giessmann T, Siegmund W, Monnikes H, Hosten N, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005;22(10):971–9.

    Article  CAS  PubMed  Google Scholar 

  13. Yamashita S, Takashima T, Kataoka M, Oh H, Sakuma S, Takahashi M, et al. PET imaging of the gastrointestinal absorption of orally administered drugs in conscious and anesthetized rats. J Nucl Med. 2011;52(2):249–56.

    Article  PubMed  Google Scholar 

  14. Shingaki T, Takashima T, Wada Y, Tanaka M, Kataoka M, Ishii A, et al. Imaging of gastrointestinal absorption and biodistribution of an orally administered probe using positron emission tomography in humans. Clin Pharmacol Ther. 2012;91(4):653–9.

    Article  CAS  PubMed  Google Scholar 

  15. Takashima T, Shingaki T, Katayama Y, Hayashinaka E, Wada Y, Kataoka M, et al. Dynamic analysis of fluid distribution in the gastrointestinal tract in rats: positron emission tomography imaging after oral administration of nonabsorbable marker, [(18)F]Deoxyfluoropoly(ethylene glycol). Mol Pharm. 2013;10(6):2261–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kataoka M, Takashima T, Shingaki T, Hashidzume Y, Katayama Y, Wada Y, et al. Dynamic analysis of GI absorption and hepatic distribution processes of telmisartan in rats using positron emission tomography. Pharm Res. 2012;29(9):2419–31.

    Article  CAS  PubMed  Google Scholar 

  17. Clarke SE, Austin NE, Bloomer JC, Haddock RE, Higham FC, Hollis FJ, et al. Metabolism and disposition of 14C-granisetron in rat, dog and man after intravenous and oral dosing. Xenobiotica. 1994;24(11):1119–31.

    Article  CAS  PubMed  Google Scholar 

  18. Matsumoto S, Tagawa M, Hatoyama T, Fujii T, Miyazaki H, Sekine Y. Absorption, distribution, metabolism and excretion of [carbonyl-14C]mosapride citrate after repeated oral administration in rats. Arzneimittelforschung. 1993;43(10):1103–8.

    CAS  PubMed  Google Scholar 

  19. Nishimura M, Matsuura K, Tsukioka T, Yamashita H, Inagaki N, Sugiyama T, et al. In vitro and in vivo characteristics of prochlorperazine oral disintegrating film. Int J Pharm. 2009;368(1–2):98–102.

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto K, Kato N, Isogai Y, Kuroda T, Ishida T, Yamatodani A. Induction and antagonism of pica induced by teriparatide in rats. Eur J Pharmacol. 2015;764:457–62.

    Article  CAS  PubMed  Google Scholar 

  21. Michiels M, Hendriks R, Heykants J. On the pharmacokinetics of domperidone in animals and man II. tissue distribution, placental and milk transfer of domperidone in the Wistar rat. Eur J Drug Metab Pharmacokinet. 1981;6(1):37–48.

    Article  CAS  PubMed  Google Scholar 

  22. Lee HT, Lee YJ, Chung SJ, Shim CK. Effect of prokinetic agents, cisapride and metoclopramide, on the bioavailability in humans and intestinal permeability in rats of ranitidine, and intestinal charcoal transit in rats. Res Commun Mol Pathol Pharmacol. 2000;108(5–6):311–23.

    CAS  PubMed  Google Scholar 

  23. Hua J, Pero RW, Kane R. Pharmacokinetics and central nervous system toxicity of declopramide (3-chloroprocainamide) in rats and mice. Anti-Cancer Drugs. 1999;10(1):79–88.

    Article  CAS  PubMed  Google Scholar 

  24. Seto K, Sasaki T, Katsunuma K, Kobayashi N, Tanaka K, Tack J. Acotiamide hydrochloride (Z-338), a novel prokinetic agent, restores delayed gastric emptying and feeding inhibition induced by restraint stress in rats. Neurogastroenterol Motil. 2008;20(9):1051–9.

    Article  CAS  PubMed  Google Scholar 

  25. Li F, Yu L. Determination of trimebutine maleate in rat plasma and tissues by using capillary zone electrophoresis. Biomed Chromatogr. 2001;15(4):248–51.

    Article  CAS  PubMed  Google Scholar 

  26. Goodman LS, Gilman A, Brunton LL, Lazo JS, Parker KL. Goodman & Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill; 2006.

    Google Scholar 

  27. Yoshida N, Omoya H, Oka M, Furukawa K, Ito T, Karasawa T. AS-4370, a novel gastrokinetic agent free of dopamine D2 receptor antagonist properties. Arch Int Pharmacodyn Ther. 1989;300:51–67.

    CAS  PubMed  Google Scholar 

  28. Ji SW, Park HJ, Cho JS, Lim JH, Lee SI. Investigation into the effects of mosapride on motility of Guinea pig stomach, ileum, and colon. Yonsei Med J. 2003;44(4):653–64.

    Article  CAS  PubMed  Google Scholar 

  29. Yoshida N, Ito T, Karasawa T, Itoh Z. AS-4370, a new gastrokinetic agent, enhances upper gastrointestinal motor activity in conscious dogs. J Pharmacol Exp Ther. 1991;257(2):781–7.

    CAS  PubMed  Google Scholar 

  30. Williams PI, Smith M. An assessment of prochlorperazine buccal for the prevention of nausea and vomiting during intravenous patient-controlled analgesia with morphine following abdominal hysterectomy. Eur J Anaesthesiol. 1999;16(9):638–45.

    Article  CAS  PubMed  Google Scholar 

  31. Botella A, Rekik M, Delvaux M, Davicco MJ, Barlet JP, Frexinos J, et al. Parathyroid hormone (PTH) and PTH-related peptide induce relaxation of smooth muscle cells from guinea pig ileum: interaction with vasoactive intestinal peptide receptors. Endocrinology. 1994;135(5):2160–7.

    CAS  PubMed  Google Scholar 

  32. Slattery MG, Liko D, Heideman W. Protein kinase A, TOR, and glucose transport control the response to nutrient repletion in Saccharomyces cerevisiae. Eukaryot Cell. 2008;7(2):358–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Friend DR. Oral colon-specific drug delivery. Boca Raton: CRC Press; 1992.

    Google Scholar 

  34. Mok LL, Cooper CW, Thompson JC. Relaxation of rat gastrointestinal smooth muscle by parathyroid hormone. J Bone Miner Res. 1987;2(4):329–36.

    Article  CAS  PubMed  Google Scholar 

  35. Mok LL, Nickols GA, Thompson JC, Cooper CW. Parathyroid hormone as a smooth muscle relaxant. Endocr Rev. 1989;10(4):420–36.

    Article  CAS  PubMed  Google Scholar 

  36. Sanger GJ, Lee K. Hormones of the gut-brain axis as targets for the treatment of upper gastrointestinal disorders. Nat Rev Drug Discov. 2008;7(3):241–54.

    Article  CAS  PubMed  Google Scholar 

  37. Costall B, Naylor RJ. Neuropharmacology of emesis in relation to clinical response. Br J Cancer Suppl. 1992;19:S2–7. discussion S7-8.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Babic T, Browning KN. The role of vagal neurocircuits in the regulation of nausea and vomiting. Eur J Pharmacol. 2014;722:38–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank Masahiro Sasaki, Ph.D. of the Institute of Biomedical Research and Innovation for supplying [18F]FDG. We thank Dr. Naoto Kato for fruitful discussions. The authors declare that this study had the funding support of the Asahi Kasei Pharma Corporation, and that T. Takashima, who worked for RIKEN, is currently an employee of the Asahi Kasei Pharma Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomotaka Shingaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shingaki, T., Katayama, Y., Nakaoka, T. et al. Exploration of Antiemetics for Osteoporosis Therapy-Induced Nausea and Vomiting Using PET Molecular Imaging Analysis to Gastrointestinal Pharmacokinetics. Pharm Res 33, 1235–1248 (2016). https://doi.org/10.1007/s11095-016-1868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1868-6

KEY WORDS

Navigation