Skip to main content
Log in

In Silico Modeling of Non-Linear Drug Absorption for the P-gp Substrate Talinolol and of Consequences for the Resulting Pharmacodynamic Effect

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The aim of the present work was to demonstrate P-glycoprotein's involvement in the non-linear talinolol pharmacokinetics using an advanced compartment and transit model (ACAT) and to compare the results predicted from the model to the finding of a phase I dose escalation study with oral talinolol doses increasing from 25 to 400 mg.

Materials and Methods

Besides minimum input parameters for the compound (pKa(s), solubility at one or more pH's, P eff, doses, formulation, diffusivity), physiological and pharmacokinetic properties, transporter data are included in these predictions. The simulations assumed higher expression levels in lower gastrointestinal regions, in particular in the colon, which is in accordance with the results of intestinal rat perfusion studies and intestinal distribution data from rats, catfishes, micropigs and humans reported in the literature. Optimized values for P-glycoprotein (P-gp) K m and V max were used for the final simulation results and for a stochastic virtual trial with 12 patients.

Results

Talinolol, a P-gp substrate, exhibits non-linear dose AUC relationship after administration of 25, 50, 100 and 400 mg immediate-release tablets. This dose dependency is due to a decrease of efflux transport caused by saturation of P-gp by talinolol. It was found that oral bioavailability increases after administration of higher doses of talinolol. The predicted bioavailability of the p.o. 25, 50, 100 and 400 mg doses of talinolol was 64, 76, 85, 94%, respectively. Pharmacokinetic parameters (AUC, C max) from in silico simulations are within acceptable range comparing with data, observed in vivo. However, the in vitro value of K m for talinolol's interactions with P-gp could not be used in the simulation and still reproduce the observed non-linear dose dependence. For each of the four doses, GastroPlus® was used to model pharmacodynamic (PD) response and to optimize the values of CLe, E max, and EC50 with the effect compartment linked indirectly to the central compartment. For all simulations, EC50 was 114 nM and E0 was 83 bpm.

Conclusion

Comparison between the results of the in vivo study and the in silico simulations determined the quality and reliability of the in silico predictions and demonstrate the simulation of dose dependent absorption. In contrast to previous simulation work for the non-linear dose dependence of interaction with intestinal transporters or enterocyte metabolism, optimized K m and V max values were required to reproduce the clinically observed non-linear dose dependence. The model developed may be useful in the prediction of absorption of other P-gp substrates including pharmacodynamic consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. C. Terstappen and A. Reggiani. in silico research in drug discovery. Trends Pharmacol. Sci. 22:23–26 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. O. Engkvist and P. Wrede. High-throughput, in silico prediction of aqueous solubility based on one- and two- dimensional descriptors. J. Chem. Inf. Comput. Sci. 42:1247–1249 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. J. Huuskonen, J. Rantanen, and D. Livingstone. Prediction of aqueous solubility for a diverse set of organic compounds based on an atom-type electrotopological state indices. Eur. J. Med. Chem. 35:1081–1088 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. D. L. Peterson and S. H. Yalkowsky. Comparison of two methods for predicting aqueous solubility. J. Chem. Inf. Comput. Sci. 41:1531–1534 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. I. V. Tetko, Y. Tanchuk, T. N. Kashewa, and A. E. Villa. Internet software for the calculation of the lipophilicity and aqueous solubility of chemical compounds. J. Chem. Inf. Comput. Sci. 41:246–252 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. A. P. Beresford, H. E. Selick, and M. H. Tarbit. The emerging importance of predictive ADME simulation in drug discovery. Drug Discov. Today 7:109–116 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. D. Butina, M. D. Segall, and K. Frankcombe. Predicting ADME properties in silico: methods and models. Drug Discov. Today 7:S83–S88 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. D. Smith and H. van de Waterbeemd. Pharmacokinetics and metabolism in early drug discovery. Curr. Opin. Chem. Biol. 3:373–378 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. B. Agoram, W. S. Woltosz, and M. B. Bolger. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv. Drug Deliv. Rev. 50(Suppl 1):S41–S67 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. H. Zhou. Pharmacokinetic strategies in deciphering atypical drug absorption profiles. J. Clin. Pharmaco. 43:211–227 (2003).

    Article  CAS  Google Scholar 

  11. A. Boobis, U. Gundert-Remy, P. Kremers, P. Macheras, and O. Pelkonen. in silico prediction of ADME and pharmacokinetics. Report of an expert meeting organised by COST B15. Eur. J. Pharm. Sci. 17:183–193 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. N. F. Ho, W. I. Higuchi, and J. Turi. Theoretical model studies of dry apsorption and transport in the GI tract. J. Pharm. Sci. 61:192–197 (1972).

    Article  PubMed  CAS  Google Scholar 

  13. P. J. Sinko, G. D. Leesman, and G. L. Amidon. Predicting fraction dose absorbed in humans using a macroscopic mass balance approach. Pharm. Res. 8:979–988 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. A. Kalampokis, P. Argyrakis, and P. Macheras. A heterogenous tube model of intestinal drug absorption based on probabilistic concepts. Pharm. Res. 16:1764–1769 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. A. Kalampokis, P. Argyrakis, and P. Macheras. Heterogenous tube model for the study of small intestinal transit flow. Pharm. Res. 16:87–91 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. L. X. Yu and G. L. Amidon. A compartmental absorption and transit model for estimating oral drug absorption. Int. J. Pharm. 186:119–125 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. L. X. Yu, J. R. Crison, and G. L. Amidon. Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. Int. J. Pharm. 140:111–118 (1996).

    Article  CAS  Google Scholar 

  18. J. Schmidt. Talinolol, ein klinisch bewaerter β1-selektiver Betablocker-Eine Uebersicht zu pharmakokinetischen und pharmakodynamischen Eigenschaften. Perfusion 9:291–296 (1995).

    Google Scholar 

  19. U. Borchrad. Pharmacological properties of β-adrenoreceptor blocking drugs. J. Clin. Bas. Cardiol. 1:5–9 (1998).

    Google Scholar 

  20. C. de Mey, V. Schroeter, R. Butzer, P. Jahn, K. Weisser, U. Wetterich, B. Terhaag, E. Mutschler, H. Spahn-Langguth, D. Palm, and G. G. Belz. Dose–effect and kinetic–dynamic relationships of the β-adrenoceptor blocking properties of various doses of talinolol in healthy humans. J. Cardio. Pharmacol. 26:879–888 (1995).

    Article  Google Scholar 

  21. H. Spahn-Langguth, G. Baktir, A. Radschuweit, A. Okyar, B. Terhaag, P. Ader, A. Hanafy, and P. Langguth. P-glycoprotein transporters and the gastrointestinal tract: evaluation of the potential in vivo relevance of in vitro data employing talinolol as model compound. Int. J. Clin. Pharmacol. Ther. 36:16–24 (1998).

    PubMed  CAS  Google Scholar 

  22. T. Gramatté, R. Oertel, B. Terhaag, and W. Kirch. Direct demonstration of small and site-dependent absorption of the β-blocker talinolol in humans. Clin.Pharmacol. Ther. 59:541–549 (1996).

    Article  PubMed  Google Scholar 

  23. U. Wetterich, H. Spahn-Langguth, E. Mutschler, B. Terhaag, W. Rösch, and P. Langguth. Evidence for intestinal secretion as an additional clearance pathway of talinolol enantiomers: concentration- and dose-dependent absorption in vitro and in vivo. Pharm. Res. 13:514–522 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. R. R. Oertel, K. Richter, B. Trausch, A. Berndt, T. Gramatte, and W. Kirch. Elucidation of the structure of talinolol metabolites in man. Determination of talinolol and hydroxylated talinolol metabolites in urine and analysis of talinolol in serum. J. Cromatogr. Biomed. Appl. 660:353–363 (1994).

    Article  CAS  Google Scholar 

  25. B. Terhaag, T. Gramatte, K. Richter, J. Voss, and K. Feller. The biliary elimination of the selective beta-receptor blocking drug talinolol in man. Int. J. Clin. Pharmacol. Ther. Toxicol. 27:170–172 (1989).

    PubMed  CAS  Google Scholar 

  26. B. A. Hendriksen, M. V. Felix, and M. B. Bolger. The composite solubility versus pH profile and its role in intestinal absorption prediction. AAPS Pharm. Sci. 5:1–15 (2003).

    Article  Google Scholar 

  27. V. D. Makhey, A. Guo, D. A. Norris, P. Hu, J. Yan, and P. J. Sinko. Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells. Pharm. Res. 15:1160–1167 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. D. Wagner, H. Spahn-Langguth, A. Hanafy, A. Koggel, and P. Langguth. Intestinal drug efflux: formulation and food effects. Adv. Drug Deliv. Rev. 50(Suppl 1):S13–S31 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. S. Tamura, A. Ohike, R. Ibuki, G. L. Amidon, and S. Yamashita. Tacrolimus is a class II low solubility high-permeability drug: the effect of P-glycoprotein efflux on regional permeability of tacrolimus in rats. J. Pharm. Sci. 91:719–729 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. K. M. Kleinow, A. M. Doi, and A. A. Smith. Distribution and inducibility of P-glycoprotein in the catfish: immunohistochemical detection using the mammalian C-219 monoclonal. Mar. Environ. Res. 50:13–17 (2000).

    Article  Google Scholar 

  31. H. Tang, Y. Pak, and M. Mayersohn. P-glycoprotein (P-gp) mRNA and protein expression pattern along the small intestine of the Yucatan micropig. AAPS Pharm. Sci. 4(4):Abstract:T2225.

  32. S. Mouly and M. F. Paine. P-glycoprotein increases from proximal to distal regions of human small intestine. Pharm. Res. 20:1595–1599 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. A. C. Hindmarsh and L. R. Petzold. Algorithms and software for ordinary differential equations and differential algebraic equations. Comput. Phys. 9:148–155 (1995). Part I: Euler methods and Error Estimation: 34–41, Part II: Higher Order Methods and Software Packages.

    Article  Google Scholar 

  34. U. Wetterich. Doctoral Thesis. University of Frankfurt, Germany, 1995.

    Google Scholar 

  35. R. Oertel and K. Richter. The metabolism of the beta receptor blocker talinolol in humans relationship between structure, polarity and amount excreted. Die Pharmazie 50:637–638 (1995).

    PubMed  CAS  Google Scholar 

  36. B. Trausch, R. Oertel, K. Richter, and T. Gramatte. Die Proteinbindung von Talinolol. Die Pharmazie 50:72 (1995).

    PubMed  CAS  Google Scholar 

  37. T. M. Ludden, S. L. Beal, and L. B. Scheiner. Comparison of the Akaike information criterion, the Schwarz criterion and the F test as guides to model selection. J. Pharmacokinet. Biopharm. 22: 431–435 (1994).

    Article  PubMed  CAS  Google Scholar 

  38. R. Dvorsky, S. Balaz, and R. J. Sawchuk. Kinetics of subcellular distribution of compounds in simple biosystems and its use in QSAR. J. Theor. Biol. 185:213–222 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Langguth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tubic, M., Wagner, D., Spahn-Langguth, H. et al. In Silico Modeling of Non-Linear Drug Absorption for the P-gp Substrate Talinolol and of Consequences for the Resulting Pharmacodynamic Effect. Pharm Res 23, 1712–1720 (2006). https://doi.org/10.1007/s11095-006-9020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9020-7

Key Words

Navigation