Skip to main content
Log in

Development of a New Technique for the Efficient Delivery of Aerosolized Medications to Infants on Mechanical Ventilation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the efficiency of a new technique for delivering aerosols to intubated infants that employs a new Y-connector, access port administration of a dry powder, and excipient enhanced growth (EEG) formulation particles that change size in the airways.

Methods

A previously developed CFD model combined with algebraic correlations were used to predict delivery system and lung deposition of typical nebulized droplets (MMAD = 4.9 μm) and EEG dry powder aerosols. The delivery system consisted of a Y-connector [commercial (CM); streamlined (SL); or streamlined with access port (SL-port)] attached to a 4-mm diameter endotracheal tube leading to the airways of a 6-month-old infant.

Results

Compared to the CM device and nebulized aerosol, the EEG approach with an initial 0.9 μm aerosol combined with the SL and SL-port geometries reduced device depositional losses by factors of 3-fold and >10-fold, respectively. With EEG powder aerosols, the SL geometry provided the maximum tracheobronchial deposition fraction (55.7%), whereas the SL-port geometry provided the maximum alveolar (67.6%) and total lung (95.7%) deposition fractions, respectively.

Conclusions

Provided the aerosol can be administered in the first portion of the inspiration cycle, the proposed new method can significantly improve the deposition of pharmaceutical aerosols in the lungs of intubated infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACI:

Andersen Cascade Impactor

AS:

Albuterol sulfate

B#:

Airway bifurcation number

CDC:

Centers for Disease Control

CFD:

Computational fluid dynamics

CM:

Commercial

DE:

Deposition efficiency

DF:

Deposition fraction

ED:

Emitted dose

EEG:

Excipient enhanced growth

ETT:

Endotracheal tube

FR:

Fraction remaining

GSD:

Geometric standard deviation

ID:

Internal diameter

LL:

Left lower (lung lobe)

LPM:

Liters per minute

LRN:

Low Reynolds number

MDI:

Metered dose inhaler

MMAD:

Mass median aerodynamic diameter

RH:

Relative humidity

SIP:

Stochastic individual path

SL:

Streamlined

TB:

Tracheobronchial

References

  1. Fink JB. Aerosol delivery to ventilated infant and pediatric patients. Respir Care. 2004;49:653–65.

    PubMed  Google Scholar 

  2. Mazela J, Polin RA. Aerosol delivery to ventilated newborn infants: historical challenges and new directions. Eur J Pediatr. 2011;170:433–44.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Rubin BK. Pediatric aerosol therapy: new devices and new drugs. Respir Care. 2011;56:1411–21.

    Article  PubMed  Google Scholar 

  4. Rubin BK, Fink JB. Aerosol therapy for children. Respir Care Clin N Am. 2001;7:175–213.

    Article  CAS  PubMed  Google Scholar 

  5. Fok TF, Monkman S, Dolovich M, Gray S, Coates G, Paes B, et al. Efficiency of aerosol medication delivery from a metered dose inhaler versus jet nebulizer in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 1996;21:301–9.

    Article  CAS  PubMed  Google Scholar 

  6. Longest PW, Azimi M, Golshahi L, Hindle M. Improving aerosol drug delivery during invasive mechanical ventilation with redesigned components. Respiratory Care. 2014;59:686–8.

  7. Longest PW, Azimi M, Hindle M. Optimal delivery of aerosols to infants during mechanical ventilation. J Aerosol Med Pulm Drug Deliv. 2013. doi:10.1089/jamp.2013.1077.

    Google Scholar 

  8. Fok TF, Alessa M, Monkman S, Dolovich M, Girard L, Coates G, et al. Pulmonary deposition of salbutamol aerosol delivered by metered dose inhaler, jet nebulizer, and ultrasonic nebulizer in mechanically ventilated rabbits. Pediatr Res. 1997;42:721–7.

    Article  CAS  PubMed  Google Scholar 

  9. Borgstrom L, Olsson B, Thorsson L. Degree of throat deposition can explain the variability in lung deposition of inhaled drugs. J Aerosol Med. 2006;19:473–83.

    Article  PubMed  Google Scholar 

  10. Dhand R. Inhalation therapy in invasive and noninvasive mechanical ventilation. Curr Opin Crit Care. 2007;13:27–38.

    Article  PubMed  Google Scholar 

  11. Dubus JC, Vecellio L, De Monte M, Fink JB, Grimbert D, Montharu J, et al. Aerosol deposition in neonatal ventilation. Pediatr Res. 2005;58:10–4.

    Article  PubMed  Google Scholar 

  12. Sidler-Moix AL, Dolci U, Berger-Gryllaki M, Pannatier A, Cotting J, Di Paolo ER. Albuterol delivery in an in vitro pediatric ventilator lung model: comparison of jet, ultrasonic, and mesh nebulizers. Pediatr Crit Care Med. 2013;14:E98–E102.

    Article  PubMed  Google Scholar 

  13. Ari A, Atalay OT, Harwood R, Sheard MM, Aljamhan EA, Fink JB. Influence of nebulizer type, position, and bias flow on aerosol drug delivery in simulated pediatric and adult lung models during mechanical ventilation. Respir Care. 2010;55:845–51.

    PubMed  Google Scholar 

  14. Mazela J, Chmura K, Kulza M, Henderson C, Gregory TJ, Moskal A, et al. Aerosolized albuterol sulfate delivery under neonatal ventilatory conditions: In vitro evaluation of a novel ventilator circuit patient interface connector. J Aerosol Med Pulm Drug Deliv. 2013. doi:10.1089/jamp.2012.0992.

    PubMed  Google Scholar 

  15. Pohlmann G, Iwatschenko P, Koch W, Windt H, Rast M, Gama de Abreu M, et al. A novel continuous powder aerosolizer (CPA) for inhalative administration of highly concentrated recombinant surfactant protein-C (rSP-C) surfactant to perterm neonates. J Aerosol Med Pulm Drug Deliv. 2013;26:370–9.

    Article  CAS  PubMed  Google Scholar 

  16. Laube BL, Sharpless G, Shermer C, Sullivan V, Powell K. Deposition of dry powder generated by solovent in Sophia Anatomical infant nose-throat (SAINT) model. Aerosol Sci Technol. 2012;46:514–20.

    Article  CAS  Google Scholar 

  17. Everard ML, Devadason SG, LeSouef PN. In vitro assessment of drug delivery through an endotracheal tube using a dry powder inhaler delivery system. Thorax. 1996;51:75–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Longest PW, Hindle M. Numerical model to characterize the size increase of combination drug and hygroscopic excipient nanoparticle aerosols. Aerosol Sci Technol. 2011;45:884–99.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hindle M, Longest PW. Condensational growth of combination drug-excipient submicrometer particles for targeted high efficiency pulmonary delivery: evaluation of formulation and delivery device. J Pharm Pharmacol. 2012;64:1254–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Longest PW, Tian G, Li X, Son Y-J, Hindle M. Performance of combination drug and hygroscopic excipient submicrometer particles from a softmist inhaler in a characteristic model of the airways. Ann Biomed Eng. 2012;40:2596–610.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Son Y-J, Longest PW, Hindle M. Aerosolization characteristics of dry powder inhaler formulations for the excipient enhanced growth (EEG) application: effect of spray drying process conditions on aerosol performance. Int J Pharm. 2013;443:137–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Son Y-J, Longest PW, Tian G, Hindle M. Evaluation and modification of commercial dry powder inhalers for the aerosolization of submicrometer excipient enhanced growth (EEG) formulation. Eur J Pharm Sci. 2013;49:390–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Golshahi L, Tian G, Azimi M, Son Y-J, Walenga RL, Longest PW, et al. The use of condensational growth methods for efficient drug delivery to the lungs during noninvasive ventilation high flow therapy. Pharm Res. 2013;30:2917–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Tian G, Longest PW, Li X, Hindle M. Targeting aerosol deposition to and within the lung airways using excipient enhanced growth. J Aerosol Med Pulm Drug Deliv. 2013;26:248–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Longest PW, Hindle M. Condensational growth of combination drug-excipient submicrometer particles: comparison of CFD predictions with experimental results. Pharm Res. 2012;29:707–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Longest PW, Golshahi L, Hindle M. Improving pharmaceutical aerosol delivery during noninvasive ventilation: effects of streamlined components. Ann Biomed Eng. 2013;41:1217–32.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Longest PW, Spence BM, Holbrook LT, Mossi KM, Son Y-J, Hindle M. Production of inhalable submicrometer aerosols from conventional mesh nebulizers for improved respiratory drug delivery. J Aerosol Sci. 2012;51:66–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Longest PW, Walenga RL, Son Y-J, Hindle M. High efficiency generation and delivery of aerosols through nasal cannula during noninvasive ventilation. J Aerosol Med Pulm Drug Deliv. 2013;26:266–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Longest PW, Son Y-J, Holbrook LT, Hindle M. Aerodynamic factors responsible for the deaggregation of carrier-free drug powders to form micrometer and submicrometer aerosols. Pharm Res. 2013;30:1608–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Behara SRB, Farkas DR, Hindle M, Longest PW. Development of a high efficiency dry powder inhaler: effects of capsule chamber design and inhaler surface modifications. Pharm Res. 2014;31:360–72.

    Article  CAS  PubMed  Google Scholar 

  31. National Centers for Health Statistics. Length-for-age and Weight for age percentiles. 2000. http://www.cdc.gov/growthcharts .

  32. Phalen RF, Oldham MJ, Beaucage CB, Crocker TT, Mortensen JD. Postnatal enlargement of human tracheobronchial airways and implications for particle deposition. Anat Rec. 1985;212:368–80.

    Article  CAS  PubMed  Google Scholar 

  33. Walenga RL, Tian G, Longest PW. Development of characteristic upper tracheobronchial airway models for testing pharmaceutical aerosol delivery. ASME J Biomech Eng. 2013;135(9):091010.

    Article  Google Scholar 

  34. Tian G, Longest PW, Su G, Walenga RL, Hindle M. Development of a stochastic individual path (SIP) model for predicting the tracheobronchial deposition of pharmaceutical aerosols: effects of transient inhalation and sampling the airways. J Aerosol Sci. 2011;42:781–99.

    Article  CAS  Google Scholar 

  35. Longest PW, Tian G, Delvadia R, Hindle M. Development of a stochastic individual path (SIP) model for predicting the deposition of pharmaceutical aerosols: effects of turbulence, polydisperse aerosol size, and evaluation of multiple lung lobes. Aerosol Sci Technol. 2012;46:1271–85.

    Article  CAS  Google Scholar 

  36. Walsh BK, DiBlasi RM. Mechanical ventilation of the neonate and pediatric patient. In: Walsh BK, Czervinske MP, DiBlasi RM, editors. Perinatal and pediatric respiratory care. St. Louis: Saunders Elsevier; 2010.

    Google Scholar 

  37. Wilcox DC. Turbulence modeling for CFD. 2nd ed. California: DCW Industries, Inc.; 1998.

    Google Scholar 

  38. Longest PW, Hindle M, Das Choudhuri S, Xi J. Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth-throat geometry. J Aerosol Sci. 2008;39:572–91.

    Article  CAS  Google Scholar 

  39. Longest PW, Vinchurkar S. Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence. J Biomech. 2007;40:305–16.

    Article  Google Scholar 

  40. Xi J, Longest PW, Martonen TB. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J Appl Physiol. 2008;104:1761–77.

    Article  PubMed  Google Scholar 

  41. Longest PW, Holbrook LT. In silico models of aerosol delivery to the respiratory tract - development and applications. Adv Drug Deliv Rev. 2012;64:296–311.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Longest PW, Tian G, Walenga RL, Hindle M. Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharm Res. 2012;29:1670–88.

    Article  CAS  PubMed  Google Scholar 

  43. Longest PW, Xi J. Condensational growth may contribute to the enhanced deposition of cigarette smoke particles in the upper respiratory tract. Aerosol Sci Technol. 2008;42:579–602.

    Article  CAS  Google Scholar 

  44. Longest PW, Hindle M, Das Choudhuri S, Byron PR. Numerical simulations of capillary aerosol generation: CFD model development and comparisons with experimental data. Aerosol Sci Technol. 2007;41:952–73.

    Article  CAS  Google Scholar 

  45. Matida EA, Finlay WH, Grgic LB. Improved numerical simulation of aerosol deposition in an idealized mouth-throat. J Aerosol Sci. 2004;35:1–19.

    Article  CAS  Google Scholar 

  46. Longest PW, Xi J. Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci Technol. 2007;41:380–97.

    Article  CAS  Google Scholar 

  47. Longest PW, Hindle M. CFD simulations of enhanced condensational growth (ECG) applied to respiratory drug delivery with comparisons to in vitro data. J Aerosol Sci. 2010;41:805–20.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Heyder J, Gebhart J. Gravitational deposition of particles from laminar aerosol flow through inclined circular tubes. J Aerosol Sci. 1977;8:289–95.

    Article  Google Scholar 

  49. Finlay WH. The mechanics of inhaled pharmaceutical aerosols. San Diego: Academic; 2001.

    Google Scholar 

  50. Hofmann W, Martonen TB, Graham RC. Predicted deposition of nonhygroscopic aerosols in the human lung as a function of subject age. J Aerosol Med. 1989;2:49–67.

    Article  Google Scholar 

  51. Dunnill MS. Postnatal growth of the lung. Thorax. 1962;17:329–33.

    Article  PubMed Central  Google Scholar 

  52. Vinchurkar S, Longest PW, Peart J. CFD simulations of the Andersen cascade impactor: model development and effects of aerosol charge. J Aerosol Sci. 2009;40:807–22.

    Article  CAS  Google Scholar 

  53. Usmani OS, Biddiscombe MF, Nightingale JA, Underwood SR, Barnes PJ. Effects of bronchodilator particle size in asthmatic patients using monodisperse aerosols. J Appl Physiol. 2003;95:2106–12.

    PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under Award Number R21HD073728. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Dr. Michael Hindle of the VCU Department of Pharmaceutics is gratefully acknowledged for helpful comments on this study and for reviewing the manuscript. No conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Worth Longest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longest, P.W., Tian, G. Development of a New Technique for the Efficient Delivery of Aerosolized Medications to Infants on Mechanical Ventilation. Pharm Res 32, 321–336 (2015). https://doi.org/10.1007/s11095-014-1466-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1466-4

KEY WORDS

Navigation