Skip to main content

Advertisement

Log in

BSA-PLGA-Based Core-Shell Nanoparticles as Carrier System for Water-Soluble Drugs

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Preparation, optimization and in vitro evaluation of core-shell nanoparticles comprising of a hydrophilic core of BSA surrounded by a hydrophobic shell of PLGA for loading water-soluble drugs.

Methods

A double emulsion method was optimized for preparation of BSA-PLGA based core-shell nanoparticles. Proof of concept for core-shell type structure was established by visual techniques like confocal microscopy and TEM. Characterization was done for particle size, encapsulation efficiency, drug loading and in vitro drug release. Cellular uptake was assessed using confocal microscopy, bio-TEM and HPLC assay, and cytotoxic activity was tested by MTT assay in MG-63 osteosarcoma cells.

Results

The optimized core-shell nanoparticles showed a particle size of 243 nm (PDI-0.13) and encapsulation efficiency of 40.5% with a drug loading of 8.5% w/w. In vitro drug release studies showed a sustained release for 12 h. Cellular uptake studies indicated a rapid and efficient uptake within 2 h. TEM studies indicated that the core-shell nanoparticles were localized in cytoplasm region of the cells. Gemcitabine loaded core-shell nanoparticles showed enhanced cytotoxicity against MG-63 cells as compared to marketed formulation of gemcitabine (GEMCITE®).

Conclusion

These results indicate that core-shell nanoparticles can be a good carrier system for delivering hydrophilic drugs like gemcitabine successfully to the cells with enhanced efficacy.

Core-Shell Nanoparticles with a hydrophilic BSA core and hydrophobic PLGA shell for carrier system of hydrophilic drugs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

PLGA:

poly(lactic acid-co-glycolic acid)

REFERENCES

  1. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2012; In press. doi:10.1016/j.addr.2012.09.037

  2. Ayen WY, Garkhal K, Kumar N. Doxorubicin-loaded (PEG)(3)-PLA nanopolymersomes: effect of solvents and process parameters on formulation development and in vitro study. Mol Pharm. 2011;8(2):466–78.

    Article  PubMed  CAS  Google Scholar 

  3. Ayen WY, Chintankumar B, Jain JP, Kumar N. Effect of PEG chain length and hydrophilic weight fraction on polymersomes prepared from branched (PEG)3-PLA co-polymers. Polym Adv Technol. 2011;22(1):158–65.

    Article  CAS  Google Scholar 

  4. Jain JP, Kumar N. Self assembly of amphiphilic (PEG)(3)-PLA copolymer as polymersomes: preparation, characterization, and their evaluation as drug carrier. Biomacromolecules. 2010;11(4):1027–35.

    Article  PubMed  CAS  Google Scholar 

  5. Ayen WY, Kumar N. In vivo evaluation of doxorubicin-loaded (PEG)(3)-PLA nanopolymersomes (PolyDoxSome) using DMBA-induced mammary carcinoma rat model and comparison with marketed LipoDox. Pharm Res. 2012;29(9):2522–33.

    Article  PubMed  CAS  Google Scholar 

  6. Jeong Y-I, Cheon J-B, Kim S-H, Nah J-W, Lee Y-M, Sung Y-K, et al. Clonazepam release from core-shell type nanoparticles in vitro. J Control Release. 1998;51(2–3):169–78.

    Article  PubMed  CAS  Google Scholar 

  7. Chan JM, Zhang L, Yuet KP, Liao G, Rhee JW, Langer R, et al. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials. 2009;30(8):1627–34.

    Article  PubMed  CAS  Google Scholar 

  8. Chitkara D, Singh S, Kumar V, Danquah M, Behrman SW, Kumar N, et al. Micellar delivery of cyclopamine and Gefitinib for treating pancreatic cancer. Mol Pharm. 2012;9(8):2350–7.

    CAS  Google Scholar 

  9. Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Dev Trans Res. 2012;2(2):112–23.

    Article  CAS  Google Scholar 

  10. Lee JY, Lee SH, Oh MH, Kim JS, Park TG, Nam YS. Prolonged gene silencing by siRNA/chitosan-g-deoxycholic acid polyplexes loaded within biodegradable polymer nanoparticles. J Control Release. 2012;162(2):407–13.

    Article  PubMed  CAS  Google Scholar 

  11. Steinbach JM, Weller CE, Booth CJ, Saltzman WM. Polymer nanoparticles encapsulating siRNA for treatment of HSV-2 genital infection. J Control Release. 2012;162(1):102–10.

    Article  PubMed  CAS  Google Scholar 

  12. Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 1999;25(4):471–6.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang Z, Huey Lee S, Feng SS. Folate-decorated poly(lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery. Biomaterials. 2007;28(10):1889–99.

    Article  PubMed  Google Scholar 

  14. Tewes F, Munnier E, Antoon B, Ngaboni Okassa L, Cohen-Jonathan S, Marchais H, et al. Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods. Eur J Pharm Biopharm. 2007;66(3):488–92.

    Article  PubMed  CAS  Google Scholar 

  15. Leo E, Brina B, Forni F, Vandelli MA. In vitro evaluation of PLA nanoparticles containing a lipophilic drug in water-soluble or insoluble form. Int J Pharm. 2004;278(1):133–41.

    Article  PubMed  CAS  Google Scholar 

  16. Ubrich N, Bouillot P, Pellerin C, Hoffman M, Maincent P. Preparation and characterization of propranolol hydrochloride nanoparticles: a comparative study. J Control Release. 2004;97(2):291–300.

    Article  PubMed  CAS  Google Scholar 

  17. Khiati S, Luvino D, Oumzil K, Chauffert B, Camplo M, Barthelemy P. Nucleoside-lipid-based nanoparticles for cisplatin delivery. ACS Nano. 2011;5(11):8649–55.

    Article  PubMed  CAS  Google Scholar 

  18. Kashi TS, Eskandarion S, Esfandyari-Manesh M, Marashi SM, Samadi N, Fatemi SM, et al. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int J Nanomedicine. 2012;7(1):221–34.

    PubMed  Google Scholar 

  19. Cavalli R, Bargoni A, Podio V, Muntoni E, Zara GP, Gasco MR. Duodenal administration of solid lipid nanoparticles loaded with different percentages of tobramycin. J Pharm Sci. 2003;92(5):1085–94.

    Article  PubMed  CAS  Google Scholar 

  20. Chavanpatil MD, Khdair A, Patil Y, Handa H, Mao G, Panyam J. Polymer-surfactant nanoparticles for sustained release of water-soluble drugs. J Pharm Sci. 2007;96(12):3379–89.

    Article  PubMed  CAS  Google Scholar 

  21. Vrignaud S, Benoit JP, Saulnier P. Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials. 2011;32(33):8593–604.

    Article  PubMed  CAS  Google Scholar 

  22. Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, et al. Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano. 2010;4(10):6001–13.

    Article  PubMed  CAS  Google Scholar 

  23. Hu SH, Chen SY, Gao X. Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano. 2012;6(3):2558–65.

    Article  PubMed  CAS  Google Scholar 

  24. Liu M, Gan L, Chen L, Xu Z, Zhu D, Hao Z, et al. Supramolecular core-shell nanosilica@liposome nanocapsules for drug delivery. Langmuir. 2012;28(29):10725–32.

    Article  PubMed  CAS  Google Scholar 

  25. Zhu J, Tang A, Law LP, Feng M, Ho KM, Lee DK, et al. Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers. Bioconjug Chem. 2005;16(1):139–46.

    Article  PubMed  CAS  Google Scholar 

  26. Oh KS, Han SK, Lee HS, Koo HM, Kim RS, Lee KE, et al. Core/shell nanoparticles with lecithin lipid cores for protein delivery. Biomacromolecules. 2006;7(8):2362–7.

    Article  PubMed  CAS  Google Scholar 

  27. Arias JL, Gallardo V, Ruiz MA, Delgado AV. Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-fluorouracil delivery systems for active targeting. Eur J Pharm Biopharm. 2008;69(1):54–63.

    Article  PubMed  CAS  Google Scholar 

  28. Reddy LH, Couvreur C. Novel approaches to deliver gemcitabine to cancer. Curr Pharm Des. 2008;14(11):1124–37.

    Article  PubMed  CAS  Google Scholar 

  29. Okino H, Maeyama R, Manabe T, Matsuda T, Tanaka M. Trans-tissue, sustained release of gemcitabine from photocured gelatin Gel inhibits the growth of heterotopic human pancreatic tumor in nude mice. Clin Cancer Res. 2003;9(15):5786–93.

    PubMed  CAS  Google Scholar 

  30. Celano M, Cavalgno MG, Bulotta S, Paolino D, Arturi F. Cytotoxic effects of gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells. BMC Cancer. 2004;4(1):63–70.

    Article  PubMed  Google Scholar 

  31. Cavallaro G, Mariano L, Salmaso S, Caliceti P, Gaetano G. Folate-mediated targeting of polymeric conjugates of gemcitabine. Int J Pharm. 2006;307(1–2):258–69.

    Article  PubMed  CAS  Google Scholar 

  32. Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S, et al. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 2008;68(6):1970–8.

    Article  PubMed  CAS  Google Scholar 

  33. Yang J, Park S-B, Yoon H-G, Huh Y-M, Haam S. Preparation of poly caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int J Pharm. 2006;324(2):185–90.

    Article  PubMed  CAS  Google Scholar 

  34. Song C, Labhasetwar V, Cui X, Underwood T, Levy RJ. Arterial uptake of biodegradable nanoparticles for intravascular local drug delivery: results with an acute dog model. J Control Release. 1998;54(2):201–11.

    Article  PubMed  CAS  Google Scholar 

  35. Hosseinzadeh H, Atyabi F, Dinarvand R, Ostad SN. Chitosan-pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int J Nanomedicine. 2012;7(1):1851–63.

    PubMed  CAS  Google Scholar 

  36. Kandagal PB, Ashoka S, Seetharamappa J, Shaikh SMT, Jadegoud Y, Ijare OB. Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. J Pharm Biomed Anal. 2006;41(2):393–9.

    Article  PubMed  CAS  Google Scholar 

  37. Lamprecht A, Ubrich N, Pérez MH, Lehr C-M, Hoffman M, Maincent P. Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. Int J Pharm. 2000;196(2):177–82.

    Article  PubMed  CAS  Google Scholar 

  38. Guhagarkar SA, Malshe VC, Devarajan PV. Nanoparticles of polyethylene sebacate: a new biodegradable polymer. AAPS PharmSciTech. 2009;10(3):935–42.

    Article  PubMed  CAS  Google Scholar 

  39. Lamprecht A, Ubrich N, Yamamoto H, Schafer U, Takeuchi H, Lehr CM, et al. Design of rolipram-loaded nanoparticles: comparison of two preparation methods. J Control Release. 2001;71(3):297–306.

    Article  PubMed  CAS  Google Scholar 

  40. Braakhuis BJ, Ruiz van Haperen VW, Boven E, Veerman G, Peters GJ. Schedule-dependent antitumor effect of gemcitabine in in vivo model system. Semin Oncol. 1995;22(4 Suppl 11):42–6.

    PubMed  CAS  Google Scholar 

  41. dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One. 2011;6(9):e24438.

    Article  PubMed  Google Scholar 

  42. Alexander RL, Greene BT, Torti SV, Kucera GL. A novel phospholipid gemcitabine conjugate is able to bypass three drug-resistance mechanisms. Cancer Chemother Pharmacol. 2005;56(1):15–21.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Financial support from the Department of Biotechnology, India is gratefully acknowledged. Authors are thankful to Department of Science and Technology, India for confocal laser scanning microscope and TEM facilities at NIPER, SAS Nagar. Ranbaxy Science Foundation (RSF), India is duly acknowledged for recognizing this work by awarding Ranbaxy Science Scholar Award-2011 to DC in the field of Pharmaceutical sciences. Support from Dr. Anupama Mittal in conducting cell culture experiments is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Kumar.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

DSC thermograms of A) Gemcitabine, B) Blank core-shell nanoparticles, C) Gemcitabine loaded core-shell nanoparticles, D) PLGA and, E) BSA. (JPEG 142 kb)

High resolution (TIFF 348 kb)

Figure S2

XRD diagrams of (A) Gemcitabine, (B) PLGA, (C) BSA, (D) Gemcitabine loaded core-shell nanoparticles and (E) Blank core-shell nanoparticles (JPEG 228 kb)

High resolution (TIFF 320 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chitkara, D., Kumar, N. BSA-PLGA-Based Core-Shell Nanoparticles as Carrier System for Water-Soluble Drugs. Pharm Res 30, 2396–2409 (2013). https://doi.org/10.1007/s11095-013-1084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1084-6

KEY WORDS

Navigation