Skip to main content

Advertisement

Log in

Comparison of solid lipid nanoparticles for encapsulating paclitaxel or docetaxel

  • Research Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

The aim of this study was to compare physicochemical properties of solid lipid nanoparticles (SLNs) on drug nature. These SLNs were fabricated for formulating paclitaxel (PTX) or docetaxel (DTX). To make small, and highly encapsulated SLNs, the SLNs consisted of compritol 888 ATO (glyceryl behenate) as lipid matrix, poloxamer 188 or solutol HS 15 as surfactant and soya lecithin as co-surfactant. The SLNs were characterized by particle size, zeta potential, in vitro release study and cytotoxicity study. In this study, SLNs showed different physicochemical properties and release profiles according to used solid lipid. In case of particle size, PS1 and DS1 showed bigger particle size than those of PS2 and DS2. Encapsulation efficiency (%) of DTX-loaded SLNs exhibited higher than that of PTX-loaded SLNs. And, DTX-loaded SLNs showed prolonged release up to 24 h. We found that SLN using solutol HS 15 as surfactant exhibited enhanced cellular uptake on MCF-7/ADR cells. These results suggest that different drugs and surfactant effect on physicochemical properties regardless same composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baek JS, Shin SC, Cho CW (2012a) Effect of lipid on physicochemical properties of solid lipid nanoparticle of paclitaxel. J Pharm Investig 42(5):279–283

    Article  CAS  Google Scholar 

  • Baek JS, So JW, Shin SC, Cho CW (2012b) Solid lipid nanoparticles of paclitaxel strengthened by hydroxypropyl-β-cyclodextrin as an oral delivery system. Int J Mol Med 30:953–959

    CAS  PubMed  Google Scholar 

  • Bittner B, Gonzalez RC, Walter I, Kapps M, Huwyler J (2003) Impact of Solutol HS 15 on the pharmacokinetic behavior of colchicine upon intravenous administration to male Wistar rats. Biopharm Drug Dispos 24(4):173–181

    Article  CAS  PubMed  Google Scholar 

  • Coon JS, Knudson W, Clodfelter K, Lu B, Weinstein RS (1991) Solutol HS 15, nontoxic polyoxyethylene esters of 12-hydroxystearic acid, reverses multidrug resistance. Cancer Res 51(3):897–902

    CAS  PubMed  Google Scholar 

  • Cortes JE, Pazdur R (1995) Docetaxel. J Clin Oncol 13:2643–2655

    CAS  PubMed  Google Scholar 

  • Garcia-Fuentes D, Loukili N, Garcia-Fuentes M, Thomson TM (2002) Influence of dipyridamole on the fatty acid composition of the main lipid classes of chick serum. Environ Toxicol Pharmacol 12(4):189–194

    Article  CAS  PubMed  Google Scholar 

  • He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31(3):3657–3666

    Article  CAS  PubMed  Google Scholar 

  • Hortobagyi GN (1999) High-dose chemotherapy for primary breast cancer: facts versus anecdotes. J Clin Oncol 17(11):25–29

    CAS  PubMed  Google Scholar 

  • Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S (2005) Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B Biointerfaces 45:167–173

    Article  CAS  PubMed  Google Scholar 

  • Joshi M, Patravale V (2006) Formulation and evaluation of nanostructured lipid carrier (NLC)-based gel of Valdecoxib. Drug Dev Ind Pharm 32(8):911–918

    Article  CAS  PubMed  Google Scholar 

  • Kumar VV, Chandrasekar D, Ramakrishna S, Kishan V, Rao YM, Diwan PV (2007) Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics. Int J Pharm 335(1–2):167–175

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Lim SJ, Kim CK (2007) Preparation, characterization and in vitro cytotoxicity of paclitaxel loaded sterically stabilized solid lipid nanoparticles. Biomaterials 28:2137–2146

    Article  CAS  PubMed  Google Scholar 

  • Marengo E, Cavalli R, Caputo O, Rodriguez L, Gasco MR (2000) Scale-up of the preparation process of solid lipid nanospheres. Part I. Int J Pharm 205(1–2):3–13

    Article  CAS  PubMed  Google Scholar 

  • Mehnert W, Mader K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Lim LY (2005) Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J Control Release 107:30–42

    Article  CAS  PubMed  Google Scholar 

  • Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    Article  CAS  PubMed  Google Scholar 

  • Reinhart T, Bauer KH (1995) The hemolysis and solubilization behavior of nonionic polymer surface-active agents classes. Pharmazie 50(6):403–407

    CAS  PubMed  Google Scholar 

  • Rose PG, Maxson JH, Fusco N, Mossbruger K, Rodriquez M (2001) Liposomal doxorubicin in ovarian, peritoneal, and tubal carcinoma: a retrospective comparative study of single-agent dosages. Gynecol Oncol 82(2):323–328

    Article  CAS  PubMed  Google Scholar 

  • Ruchatz F, Schuch H (1998) Physicochemical properties of Solutol HS 15 and its solubisates. BASF ExAct 1:6–7

    Google Scholar 

  • Subedi RK, Kang KW, Choi HK (2009) Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci 37(3–4):508–513

    Article  CAS  PubMed  Google Scholar 

  • Trickler WJ, Nagvekar AA, Dash AK (2008) A novel nanoparticle formulation for sustained paclitaxel delivery. AAPS PharmSciTech 9:486–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trotta M, Gallarate M, Carlotti ME, Morel S (2003) Preparation of griseofulvin nanoparticles from water-dilutable microemulsions. Int J Pharm 254(2):235–242

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yu L, Han L, Sha X, Fang X (2007) Difunctional pluronic copolymer micelles for paclitaxel delivery: synergistic effect of folate-mediated targeting and pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int J Pharm 337:63–73

    Article  CAS  PubMed  Google Scholar 

  • Wissing SA, Kayser O, Muller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56:1257–1272

    Article  CAS  PubMed  Google Scholar 

  • Zur Muhlen A, Schwarz C, Mehnert W (1998) Solid lipid nanoparticles (SLN) for controlled drug delivery—drug release and release mechanism. Eur J Pharm Biopharm 45(2):149–155

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This article does not contain any studies with human and animal subjects performed by any of the authors. All authors (J. S. Baek, C. W. Cho) declare that they have no conflict of interest. This work was supported by the Basic Science Research Program (2009-009385 and 2012R1A1B5003358) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheong-Weon Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, JS., Cho, CW. Comparison of solid lipid nanoparticles for encapsulating paclitaxel or docetaxel. Journal of Pharmaceutical Investigation 45, 625–631 (2015). https://doi.org/10.1007/s40005-015-0182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-015-0182-3

Keywords

Navigation