Skip to main content

Advertisement

Log in

Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Quercetin-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Qu-NP) were prepared by emulsion–diffusion–evaporation method and characterized as 179.9 ± 11.2 nm in size with 0.128 as polydispersity index, more than 86% drug entrapment efficiency, and zeta potential was −6.06 ± 1.51 mV. d-Trehalose (5% w/v) was found to be a suitable cryoprotectant for lyophilization of Qu-NP, and antioxidant assays indicated that Qu-NP were able to retain the antioxidant property similar to that of free drug at equivalent concentration after formulation development. In vitro release study of Qu-NP showed a controlled release pattern of quercetin. An enhanced oral bioavailability (523% relative increase) was observed in pharmacokinetic study with a 6-day sustained release from Qu-NP as compared to quercetin suspension, which indicated the reduced dosing frequency. Efficacy in diabetic rats suggested that same dose of Qu-NP on every fifth day was sufficient to bring effect similar to daily dose of oral quercetin suspension, and the same effect was also observed for catalase and superoxide dismutase levels in pancreas and kidneys. Thus, the system offers an efficacious oral therapy with reduced dose and dosing frequency for treatment of diabetes and is hence patient compliant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mahesh T, Menon VP. Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytother Res. 2004;18:123–7.

    Article  PubMed  CAS  Google Scholar 

  2. Date AA, Nagarsenker MS, Patere S, Dhawan V, Gude RP, Hassan PA, et al. Lecithin-based novel cationic nanocarriers (Leciplex) II: improving therapeutic efficacy of quercetin on oral administration. Mol Pharm. 2011;8:716–26.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang L, Zuo Z, Lin G. Intestinal and hepatic glucuronidation of flavonoids. Mol Pharm. 2007;4:833–45.

    Article  PubMed  CAS  Google Scholar 

  4. Chen X, Yin OQ, Zuo Z, Chow MS. Pharmacokinetics and modeling of quercetin and metabolites. Pharm Res. 2005;22:892–901.

    Article  PubMed  CAS  Google Scholar 

  5. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008;585:325–37.

    Article  PubMed  CAS  Google Scholar 

  6. Wu TH, Yen FL, Lin LT, Tsai TR, Lin CC, Cham TM. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm. 2008;346:160–8.

    Article  PubMed  CAS  Google Scholar 

  7. Kim YJ, Bae YC, Suh KT, Jung JS. Quercetin, a flavonoid, inhibits proliferation and increases osteogenic differentiation in human adipose stromal cells. Biochem Pharmacol. 2006;72:1268–78.

    Article  PubMed  CAS  Google Scholar 

  8. Galijatovic A, Walle UK, Walle T. Induction of UDP-glucuronosyltransferase by the flavonoids chrysin and quercetin in Caco-2 cells. Pharm Res. 2000;17:21–6.

    Article  PubMed  CAS  Google Scholar 

  9. Ott M, Huls M, Cornelius MG, Fricker G. St. John’s Wort constituents modulate P-glycoprotein transport activity at the blood–brain barrier. Pharm Res. 2010;27:811–22.

    Article  PubMed  CAS  Google Scholar 

  10. van Zanden JJ, van der Woude H, Vaessen J, Usta M, Wortelboer HM, Cnubben NH, et al. The effect of quercetin phase II metabolism on its MRP1 and MRP2 inhibiting potential. Biochem Pharmacol. 2007;74:345–51.

    Article  PubMed  Google Scholar 

  11. Umathe SN, Dixit PV, Kumar V, Bansod KU, Wanjari MM. Quercetin pretreatment increases the bioavailability of pioglitazone in rats: involvement of CYP3A inhibition. Biochem Pharmacol. 2008;75:1670–6.

    Article  PubMed  CAS  Google Scholar 

  12. Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release. 2009;133:238–44.

    Article  PubMed  CAS  Google Scholar 

  13. Gao L, Liu G, Wang X, Liu F, Xu Y, Ma J. Preparation of a chemically stable quercetin formulation using nanosuspension technology. Int J Pharm. 2011;404:231–7.

    Article  PubMed  CAS  Google Scholar 

  14. Hariharan S, Bhardwaj V, Bala I, Sitterberg J, Bakowsky U, Ravi Kumar MN. Design of estradiol loaded PLGA nanoparticulate formulations: a potential oral delivery system for hormone therapy. Pharm Res. 2006;23:184–95.

    Article  PubMed  CAS  Google Scholar 

  15. Sonaje K, Italia JL, Sharma G, Bhardwaj V, Tikoo K, Kumar MNVR. Development of biodegradable nanoparticles for oral delivery of ellagic acid and evaluation of their antioxidant efficacy against cyclosporine A-induced nephrotoxicity in rats. Pharm Res. 2007;24:899–908.

    Article  PubMed  CAS  Google Scholar 

  16. Yen F-L, Wu T-H, Lin L-T, Cham T-M, Lin C-C. Naringenin-loaded nanoparticles improve the physicochemical properties and the hepatoprotective effects of naringenin in orally-administered rats with CCl4-induced acute liver failure. Pharm Res. 2009;26:893–902.

    Article  PubMed  CAS  Google Scholar 

  17. Devadasu VR, Wadsworth RM, Kumar MNVR. Protective effects of nanoparticulate coenzyme Q10 and curcumin on inflammatory markers and lipid metabolism in streptozotocin-induced diabetic rats: a possible remedy to diabetic complications. Drug Deliv and Transl Res. 2011;1:448–55.

    Article  CAS  Google Scholar 

  18. Blum JS, Weller CE, Booth CJ, Babar IA, Liang X, Slack FJ, et al. Prevention of K-Ras- and Pten-mediated intravaginal tumors by treatment with camptothecin-loaded PLGA nanoparticles. Drug Deliv and Transl Res. 2011;1:383–94.

    Article  CAS  Google Scholar 

  19. Priprem A, Watanatorn J, Sutthiparinyanont S, Phachonpai W, Muchimapura S. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine. 2008;4:70–8.

    Article  PubMed  CAS  Google Scholar 

  20. Vicentini FT, Simi TR, Del Ciampo JO, Wolga NO, Pitol DL, Iyomasa MM, et al. Quercetin in w/o microemulsion: in vitro and in vivo skin penetration and efficacy against UVB-induced skin damages evaluated in vivo. Eur J Pharm Biopharm. 2008;69:948–57.

    Article  PubMed  CAS  Google Scholar 

  21. Ghosh A, Mandal AK, Sarkar S, Panda S, Das N. Nanoencapsulation of quercetin enhances its dietary efficacy in combating arsenic-induced oxidative damage in liver and brain of rats. Life Sci. 2009;84:75–80.

    Article  PubMed  CAS  Google Scholar 

  22. Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B: Biointerfaces. 2010;80:184–92.

    Article  CAS  Google Scholar 

  23. Mittal G, Carswell H, Brett R, Currie S, Ravi Kumar MNV. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer’s pathology. J Control Release. 2011;150:220–8.

    Article  PubMed  CAS  Google Scholar 

  24. Luck H. Catalase spectrophotometric method. In: Bergmeyer H-U, editor. Methods in enzymatic analysis. New York: Academic; 1963. p. 885–93.

    Google Scholar 

  25. Kono Y. Generation of superoxide radical during autooxidation of hydroxylamine and an assay of superoxide dismutase. Arch Biochem Biophys. 1978;186:189–95.

    Article  PubMed  CAS  Google Scholar 

  26. Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MNV. Estradiol loaded PLGA nanoparticles for oral administration: Effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release. 2007;119:77–85.

    Article  PubMed  CAS  Google Scholar 

  27. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release. 1999;57:171–85.

    Article  PubMed  CAS  Google Scholar 

  28. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Del Rev. 2006;58:1688–713.

    Article  CAS  Google Scholar 

  29. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm. 2011;415:34–52

    Google Scholar 

  30. Luo CF, Yuan M, Chen MS, Liu SM, Zhu L, Huang BY, et al. Pharmacokinetics, tissue distribution and relative bioavailability of puerarin solid lipid nanoparticles following oral administration. Int J Pharm. 2011;410:2011.

    Article  Google Scholar 

  31. Azuma K, Ippoushi K, Ito H, Higashio H, Terao J. Combination of lipids and emulsifiers enhances the absorption of orally administered quercetin in rats. J Agric Food Chem. 2002;50:1706–12.

    Article  PubMed  CAS  Google Scholar 

  32. Lesser S, Cermak R, Wolffram S. Bioavailability of quercetin in pigs is influenced by the dietary fat content. J Nutr. 2004;134:1508–11.

    PubMed  CAS  Google Scholar 

  33. He W, Horn SW, Hussain MD. Improved bioavailability of orally administered mifepristone from PLGA nanoparticles. Int J Pharm. 2007;334:173–8.

    Article  PubMed  CAS  Google Scholar 

  34. Jawahar N, Nagasamy Venkatesh D, Sureshkumar R, Senthil V, Ganesh GNK, Vinoth P, et al. Development and charecterization of PLGA-nanoparticles containing carvedilol. J Pharm Sci & Res. 2009;1:123–8.

    CAS  Google Scholar 

  35. Löbenberg R, Araujo L, Kreuter J. Bodydistribution of azidothymidinebound to nanoparticles after oral administration. Eur J Pharm Biopharm. 1997;44:127–32.

    Article  Google Scholar 

  36. Yang S, Zhu J, Lu Y, Liang B, Yang C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res. 1999;16:751–7.

    Article  PubMed  CAS  Google Scholar 

  37. Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavanoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol Res. 2005;51:117–23.

    Article  PubMed  CAS  Google Scholar 

  38. Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol. 2003;135:357–64.

    Article  Google Scholar 

  39. Hii CS, Howell SL. Effects of epicatechin on rat islets of Langerhans. Diabetes. 1985;33:291–6.

    Article  Google Scholar 

  40. Hii CST, Howell SL. Effects of flavanoids on insulin secretion and 45Ca2+ handling in rat islets of langerhans. J Endocrinol. 1985;107:1–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

DC and AM are thankful for their research associate ship award to Department of Biotechnology (DBT) and Council of Scientific and Industrial Research (CSIR) respectively to carry out this research. NK is thankful to NIPER for financial support through grant C-11 (Nanotechnology and drug delivery).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chitkara, D., Nikalaje, S.K., Mittal, A. et al. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv. and Transl. Res. 2, 112–123 (2012). https://doi.org/10.1007/s13346-012-0063-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-012-0063-5

Keywords

Navigation